タイル塗り

G414xy 自動ジャッジ 難易度: 数学 > 競技数学
2024年8月30日18:42 正解数: 4 / 解答数: 5 (正答率: 80%) ギブアップ数: 0

問題文

縦4列、横4行の16マスのうち、いくつかに色を塗ります。塗られるマスの数が列ごとに相異なり、行ごとに相異なる(但し、列と行で塗られる数が一致しても良い)、場合、塗り方は何通りありますか?

解答形式

半角数字で入力してください。


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

初等幾何

katsuo.tenple 自動ジャッジ 難易度:
2月前

6

問題文

AB=ACなる二等辺三角形ABCにおいて、点Aから下ろした垂線の足をD、三角形ABCの外心.垂心をそれぞれO.Hとする。
AH:HD=119:25、OH=138、BC=480のとき、
ABの長さを求めよ。

解答形式

半角で回答して下さい。

方程式

katsuo.tenple 自動ジャッジ 難易度:
3月前

2

問題文

方程式x⁶−6x⁵+15x⁴−47x³+15x²−6x+1=0の実数解を求めて下さい。

解答形式

正の整数a.b.cを用いて$\frac{b±√c}{a}$の形で表せられるので、a+b+cの値を半角で解答して下さい。

求値問題8

Kinmokusei 自動ジャッジ 難易度:
3年前

4

問題文

共通部分を持たない2円と、その共通接線があります。図中の同じ色で示した線分の長さが等しいとき、2円の半径比を求めてください。

※図は正確でないことに注意

解答形式

大円の半径を$R_1$、小円の半径を$R_2$とすると、$R_1:R_2=\fbox ア:\fbox イ$です。文字列 アイ を解答してください。
例:$R_1:R_2=5:2$ であれば 52 と解答

絶対値(21)

y 自動ジャッジ 難易度:
4月前

5

$$
|i^{2024}|
$$

求面積問題19

Kinmokusei 自動ジャッジ 難易度:
3年前

5

問題文

2つの三角形ABCとQCRが図のように配置されています。各点が画像に記した条件を満たすとき、赤い三角形の面積を求めてください。

解答形式

半角数字で解答してください。

求面積問題23

Kinmokusei 自動ジャッジ 難易度:
3年前

10

問題文

半円の内部に正方形を2つ、図のように配置しました。赤い線分の長さ(=2つの正方形の一辺の差)が3であるとき、青で示した部分の面積と緑で示された部分の面積の差を求めてください。

解答形式

半角数字で解答してください。

求角問題12

Kinmokusei 自動ジャッジ 難易度:
3年前

7

問題文

正方形と正三角形を組み合わせた図のような図形について, 青で示した角の大きさを求めてください.

解答形式

0以上180未満の整数を半角数字で解答してください。
ただし度数法で、単位を付けずに解答してください。

9月前

6

問題文

下図で、 四角形ABCDは平行四辺形です。四角形ABCDの面積が50㎠、五角形GHIJKの面積が5㎠のとき、十角形DGEHFIBJCK(青い部分)の面積は何㎠ですか。ただし、図は正確とは限りません。

解答形式

半角数字で入力してください。
例)10

求長問題18

Kinmokusei 自動ジャッジ 難易度:
3年前

5

問題文

半円と四分円を組み合わせた図のような図形があります。青い線分の長さが$\sqrt 6$のとき、赤い線分の長さを求めてください。

解答形式

半角数字で解答してください。

求面積問題21

Kinmokusei 自動ジャッジ 難易度:
3年前

5

問題文

3つの正五角形がそれぞれ1頂点ずつを共有して図のように配置されています。緑で示した三角形の面積が22のとき、赤い三角形の面積を求めてください。

解答形式

半角数字で回答してください。

求角問題15

Kinmokusei 自動ジャッジ 難易度:
2年前

7

問題文

図の条件の下で、青で示した角の大きさを求めてください。

解答形式

解答を度数法で表し、0以上180未満の数値を半角数字で解答してください。
単位("度・°"など)はつけないでください。

外心と内心

nmoon 自動ジャッジ 難易度:
7月前

6

問題文

$\angle{A} = 60^{\circ}$ なる三角形 $ABC$ の内心を $I$,外心を $O$ とする.直線 $IO$ と直線 $BC$ の交点を $D$ とし,直線 $AD$ と三角形 $ABC$ の外接円との交点を $E(\not = A)$ とすると,以下が成立した:

$$EI = 23 , IO = 18$$

このとき,線分 $AI$ の長さは,互いに素な正整数 $a,b$ を用いて$\displaystyle\frac{a}{b}$ と表されるので,$a + b$ を解答してください.