正方形$ABCD$の外接円の劣弧$BC$上に点$E$がある。$AE+DE=10$ が成り立っているとき、$BE+CE$の値を求めよ。
答は非負整数$a,b$を用いて$-a+\sqrt{b}$と表されるので、$a+b$の値を半角数字で解答してください。
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
正整数 $x, y$ が $$x^{11}y^{10} = 2^{(2^{1110})} \cdot 3^{(3^{1110})} \cdot 5^{(5^{1110})} \cdot 37^{(37^{1110})} \cdot 1110$$ をみたすとき,$x$ のとり得る最小の値を求めて下さい.
半角英数にし、答えとなる正整数値を入力し解答して下さい.
OMCB020-E(URL : https://onlinemathcontest.com/contests/omcb020/tasks/9732) のアレンジ,というよりかはこのコンテストのTester期間中に運営さんに改題を提案したときの問題です. 4bにそぐわないとして却下されましたがよければ解いてみてください.
図の条件の下で、$x$ で示した角の大きさを求めてください。 ただし、外側の三角形は鋭角三角形であるとします。
$x=a$ 度です $(0<a<30)$ 。$a$ の値を半角数字で解答してください。
図の条件の下で、青で示した角の大きさを求めてください。
$x=a$ 度です。$a$ を半角数字で解答してください。
直線 $AT$ に点 $T$ で接する円 $\Gamma$ を描き,$A$ を通る直線 $m$と円 $\Gamma$ の交点を $A$ に近い方から順に $B,C$ とします. また,$\angle{CAT}$ の二等分線と直線 $BT$,直線 $CT$ の交点をそれぞれ $D,E$ とします. $BD=4,DE=8,EC=9$ となったとき,$\triangle{TBC}$ の面積を $S$ とすると,$S^2$ は互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表されるので,$a+b$ の値を解答してください.
半角数字で解答してください.
実数 $x,y,z$ が $\begin{cases} x+y+z=\dfrac{7}{2}\\ x^2+y^2+z^2+3(xy+yz+zx)=14\\ x^2y+y^2z+z^2x+xy^2+yz^2+zx^2+2xyz=8 \end{cases}$ を満たすとき,$\dfrac{y^2}{x^2}+\dfrac{z^2}{y^2}+\dfrac{x^2}{z^2}$ の値として考えられるものの総和は互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ の値を解答してください.
以下の条件をともに満たす $12$ 桁の正整数 $M$ はいくつありますか?
ただし,$M,A,E$ の最高位の数字は $0$ でないものとします.
条件を満たす $12$ 桁の正整数 $M$ の個数を,半角数字で余分な空白や改行を入れずに解答してください.
$65537=2^{16}+1$ が素数かどうか、計算機を使わずに判定したい。以下では $p$ を3以上の素数として、⑴から⑸の問いに答えよ。
⑴ $2^p$ を $p$ で割ったあまりは $p$ によらないことを示し、その値を求めよ。 ⑵ $65537$ が $p$ で割り切れるとき、$2^n$ を $p$ で割ったあまりが $1$ になるような最小の自然数 $n$ を求めよ。 ⑶ $65537$ が $p$ で割り切れるとき、$p$ を $32$ で割ったあまりとしてあり得る値をすべて求めよ。 ⑷ $ p < \sqrt{65537}$ をみたす $p$ であって、$p$ を $32$ で割ったあまりが⑶で求めた数になるようなものをすべて求めよ。 ⑸ 以上の結果から、$65537$ が素数かどうか判定せよ。
以下の指示に従って、すべて半角数字で入力せよ。
⑴から⑷までの答えはいずれも非負整数である。 ⑴の答えを1行目に入力せよ。 ⑵の答えを2行目に入力せよ。 ⑶の答えは1つずつ改行して3,4,......i 行目に小さい順に入力せよ。 ⑷の答えも1つずつ改行してi+1,i+2, ......j行目に小さい順に入力せよ。 最後に⑸の答えとして、$65537$ が素数であれば1を、そうでなければ0を入力せよ。
20/06/19: 解答の一部にミスがあったため修正しました。
$1,2,3,4,5,6,7,8,9$ を並べ替えてできる $9$ 桁の正の整数のうち $99$ の倍数であるものの最大値を求めてください.$\
$101\times101$ のマス目の各マスには $0,1$ のいずれかが書かれており,どの $2\times2$ のマス目についても $0,1$ が少なくとも $1$ つずつは書き込まれているとき,マス目に書かれた数の和の最大値を求めてください.
正方形$ABCD$の(辺を含まない)外部に点$P$をとったところ,以下が成り立ちました: $$ \angle{ABP}=\angle{DBP} $$ $$ PB=PC $$ このとき、$\angle{PDA}$の大きさを求めてください.
$\angle{PDA}$は度数法で,互いに素な正整数$a$,$b$を用いて$\frac{a}{b}^\circ$と表されるので,$a+b$を半角数字で解答してください.
一辺の長さが $1$ の立方体 $1800$ 個から構成される,長さ $10,12,15$ の辺からなる直方体があります. このとき,直方体の対角線のうちの $1$ つについて,これが内部を通過する立方体の個数を求めてください.
ただし,立方体の内部とは,頂点や辺・面そのものを含まないものとして考えます.
求めるべき値は非負整数値として一意に定まるので,これを解答してください.
一辺の長さが $12$ の正方形 $ABCE$ の外部に点 $D$ を、三角形 $CDE$ が正三角形になるようにとります。 正方形 $ABCE$ の外接円と直線 $DE$ の交点のうち $E$ でない方を $F$ とするとき、$AF^2$ の値を解答してください。
半角数字で入力してください。