OMCB020(E)の改題案だったヤツ

Shota_1110 自動ジャッジ 難易度: 数学 > 競技数学
2024年9月6日23:25 正解数: 13 / 解答数: 22 (正答率: 59.1%) ギブアップ数: 2

全 22 件

回答日時 問題 解答者 結果
2024年11月18日8:56 OMCB020(E)の改題案だったヤツ Jy125
正解
2024年9月29日12:32 OMCB020(E)の改題案だったヤツ Weskdohn
正解
2024年9月29日12:26 OMCB020(E)の改題案だったヤツ ゲスト
正解
2024年9月29日0:08 OMCB020(E)の改題案だったヤツ ゲスト
正解
2024年9月29日0:04 OMCB020(E)の改題案だったヤツ ゲスト
不正解
2024年9月21日17:35 OMCB020(E)の改題案だったヤツ iwashi
正解
2024年9月21日16:44 OMCB020(E)の改題案だったヤツ iwashi
不正解
2024年9月19日9:45 OMCB020(E)の改題案だったヤツ Tehom
正解
2024年9月17日16:35 OMCB020(E)の改題案だったヤツ aaabbb
正解
2024年9月17日16:34 OMCB020(E)の改題案だったヤツ aaabbb
不正解
2024年9月13日12:32 OMCB020(E)の改題案だったヤツ natsuneko
正解
2024年9月8日14:13 OMCB020(E)の改題案だったヤツ 243
正解
2024年9月8日14:08 OMCB020(E)の改題案だったヤツ 243
不正解
2024年9月8日14:05 OMCB020(E)の改題案だったヤツ 243
不正解
2024年9月8日14:01 OMCB020(E)の改題案だったヤツ 243
不正解
2024年9月7日20:42 OMCB020(E)の改題案だったヤツ MI6174
正解
2024年9月7日7:32 OMCB020(E)の改題案だったヤツ sdzzz
正解
2024年9月7日2:14 OMCB020(E)の改題案だったヤツ ゲスト
不正解
2024年9月7日2:09 OMCB020(E)の改題案だったヤツ ゲスト
不正解
2024年9月7日2:07 OMCB020(E)の改題案だったヤツ ゲスト
不正解
2024年9月6日23:58 OMCB020(E)の改題案だったヤツ false_tto
正解
2024年9月6日23:48 OMCB020(E)の改題案だったヤツ 0__citrus
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

集合の組の個数

noname 自動ジャッジ 難易度:
6月前

18

問題文

$A,B$を全ての要素が$2$以上$2024$以下の自然数からなる集合で$A$と$B$の和集合の要素数が$2023$個であるものとします。$A,B$から要素を自由に$1$つずつ選ぶとき、どのように要素を選んでもその$2$つの数の最大公約数が$1$になるような$A,B$の組$(A,B)$の個数を求めてください。ただし、必要ならインターネットにある素数表を検索して用いても構いません。また、空集合も条件を満たすものとしてください。

問題を少し変更いたしました。

解答形式

答えは正の整数$n$を用いて$2^n$と表せますから$n$を半角で1行目に入力してください。


問題文

正整数 $3$ つの集合 $S$ であって,以下を同時にみたすものは全部でいくつありますか?

  • $S$ に属する $3$ 数を十進数表記したときすべて $3$ 桁であり,それぞれの桁に $1, 2, ..., 9$ がすべて $1$ 回ずつ現れる.
  • $S$ から相異なる $2$ 数 $a, b$ を選ぶ方法であって,$a + b = 1110$ をみたすものが存在する.

解答形式

半角英数にし,答えとなる非負整数値を入力し解答して下さい.

2月前

15

問題文

$1$ 以上 $12$ 以下の整数からなる集合を $U$ とし,空でない $U$ の部分集合 $S, T$ を
$$S \cup T = U,S \cap T = \phi$$となるよう定めたところ,$S$ の元の和と $T$ の元の平方和が等しくなりました.このような集合の組 $(S, T)$ すべてに対する「$S$ の元の和」の総和を解答して下さい.


たとえば,
$$S = \{1, 2, ..., 9\},T = \{10, 11, 12\}$$であるなら,$S$ の元の和は $1 + 2 + \cdots + 9 = 45$ と計算され,$T$ の元の平方和は $10^2 + 11^2 + 12^2 = 365$ と計算されます.

解答形式

半角英数にし、答えとなる正整数値を入力し解答して下さい.

2024年

poino 自動ジャッジ 難易度:
5月前

12

問題文

2024年は閏年なので、2024年M月D日という日付が存在するような$(M,D)$の組は366組存在します。このような組のうち、
$$\frac{2024}{M・D}$$
が整数となる組の個数を求めてください。

解答形式

半角数字で入力してください。

余りの計算

noname 採点者ジャッジ 難易度:
9月前

9

$1^{2024}+2^{2024}+3^{2024}+4^{2024}+5^{2024}+…+2023^{2024}+2024^{2024}$を$17$で割った余りを求めよ。

元の問題を書き換えて別の問題にしました。前の問題は解いていただけなかったので別の問題に変えました。

解答形式

余りを自然数でお答えください


問題文

正整数 $x, y, z$ が以下の等式を同時にみたすとき,積 $xyz$ の値としてあり得るものの総和を求めてください.

$$x + y + z = 48,x^2 + y^2 + z^2 = 1110$$

解答形式

半角英数にし,答えとなる正整数値を入力し解答して下さい.

素因数分解

lemonoilemon 自動ジャッジ 難易度:
6月前

25

問題文

$12$桁の整数$111111111111$の素因数の総和を求めてください.
但し,素因数の1つとして4桁の素数が含まれます.

解答形式

整数で答えてください.

ただの連立方程式

sha256 自動ジャッジ 難易度:
8月前

8

問題文

次の$x,y$についての連立方程式を実数の範囲で解いてください。

$$
\begin{cases} \Large\frac{9}{x^2-xy+y^2}+\frac{7}{x^2+xy+y^2}=\frac{x}{256} \\ \Large \frac{9}{x^2-xy+y^2}-\frac{7}{x^2+xy+y^2}=\frac{y}{256} \end{cases}
$$

解答形式

解となる$(x,y)$の組全てについて$x+y$を足し合わせたものを半角英数字で入力してください。

orangekidの異常な愛情

orangekid 自動ジャッジ 難易度:
6月前

29

$\text{n-テトロミノ}$とは、正方形を四つ、下のようにつなげた図形です。

orangekidくんはこの図形が大好きなので、下の図のような形をした画用紙からなるべく多くの$\text{n-テトロミノ}$を切り出したいです。

$\text{n-テトロミノ}$を裏返しの状態で切り出してもよいものとするとき、orangekidくんは最大何個の$\text{n-テトロミノ}$を切り出せるでしょうか。
「個」はつけずに、整数値のみで答えてください。

整数問題(2)

tsukemono 自動ジャッジ 難易度:
3月前

35

問題文

$\frac{n}{144}$が$1$より小さい既約分数になるような自然数$n$の個数を求めよ。

解答形式

半角算用数字で答えてください。

座王001(A1)

shoko_math 自動ジャッジ 難易度:
8月前

15

問題文

$0$ でない相異なる実数 $a,b,c,d$ が以下の関係式を満たすとき,$a^2+b^2+c^2+d^2$ の値を求めてください.
$\begin{cases}
a^3-12a^2-34a+bcd=0\\
b^3-12b^2-34b+cda=0\\
c^3-12c^2-34c+dab=0\\
d^3-12d^2-34d+abc=0\\
\end{cases}$

解答形式

半角数字で解答してください.

格ゲー大会

YoneSauce 自動ジャッジ 難易度:
3月前

9

問題文

$A$ さんを含む $10$ 人の選手がゲームの格ゲー大会総当たり形式で行いました.
 $A$ さん以外の $9$ 人の選手は以下の条件を満たしているとき, $A$ さんの勝利した回数としてあり得るものの総和を求めてください.
 しかし,引き分けは考えないものとします.

  • $9$ 勝 $0$ 敗の選手がちょうど $1$ 人いる.
  • $7$ 勝 $2$ 敗の選手がちょうど $1$ 人いる.
  • $6$ 勝 $3$ 敗の選手がちょうど $3$ 人いる.
  • $2$ 勝 $7$ 敗の選手がちょうど $3$ 人いる.
  • $0$ 勝 $9$ 敗の選手がちょうど $1$ 人いる.

解答形式

非負整数を半角数字で答えてください.