全 25 件
感想を投稿してみましょう!この感想は正解した人だけにしか見えません!
この問題を解いた人はこんな問題も解いています
$A,B$を全ての要素が$2$以上$2024$以下の自然数からなる集合で$A$と$B$の和集合の要素数が$2023$個であるものとします。$A,B$から要素を自由に$1$つずつ選ぶとき、どのように要素を選んでもその$2$つの数の最大公約数が$1$になるような$A,B$の組$(A,B)$の個数を求めてください。ただし、必要ならインターネットにある素数表を検索して用いても構いません。また、空集合も条件を満たすものとしてください。
問題を少し変更いたしました。
答えは正の整数$n$を用いて$2^n$と表せますから$n$を半角で1行目に入力してください。
$1$ 以上 $12$ 以下の整数からなる集合を $U$ とし,空でない $U$ の部分集合 $S, T$ を $$S \cup T = U,S \cap T = \phi$$となるよう定めたところ,$S$ の元の和と $T$ の元の平方和が等しくなりました.このような集合の組 $(S, T)$ すべてに対する「$S$ の元の和」の総和を解答して下さい.
たとえば, $$S = \{1, 2, ..., 9\},T = \{10, 11, 12\}$$であるなら,$S$ の元の和は $1 + 2 + \cdots + 9 = 45$ と計算され,$T$ の元の平方和は $10^2 + 11^2 + 12^2 = 365$ と計算されます.
半角英数にし、答えとなる正整数値を入力し解答して下さい.
正整数 $3$ つの集合 $S$ であって,以下を同時にみたすものは全部でいくつありますか?
半角英数にし,答えとなる非負整数値を入力し解答して下さい.
$a!+b!+5c^2=2024$となる自然数$a,b,c$の組$(a,b,c)$を全て求めよ。
**入力形式** (a,b,c)=(1,1,1),(2,3,4),...というふうに半角で入力してください。区切る時は,を用いてください。(順不同)
$0$ でない相異なる実数 $a,b,c,d$ が以下の関係式を満たすとき,$a^2+b^2+c^2+d^2$ の値を求めてください. $\begin{cases} a^3-12a^2-34a+bcd=0\\ b^3-12b^2-34b+cda=0\\ c^3-12c^2-34c+dab=0\\ d^3-12d^2-34d+abc=0\\ \end{cases}$
半角数字で解答してください.
$1^{2024}+2^{2024}+3^{2024}+4^{2024}+5^{2024}+…+2023^{2024}+2024^{2024}$を$17$で割った余りを求めよ。
元の問題を書き換えて別の問題にしました。前の問題は解いていただけなかったので別の問題に変えました。
余りを自然数でお答えください
正整数 $x, y, z$ が以下の等式を同時にみたすとき,積 $xyz$ の値としてあり得るものの総和を求めてください.
$$x + y + z = 48,x^2 + y^2 + z^2 = 1110$$
半角英数にし,答えとなる正整数値を入力し解答して下さい.
次の$x,y$についての連立方程式を実数の範囲で解いてください。
$$ \begin{cases} \Large\frac{9}{x^2-xy+y^2}+\frac{7}{x^2+xy+y^2}=\frac{x}{256} \\ \Large \frac{9}{x^2-xy+y^2}-\frac{7}{x^2+xy+y^2}=\frac{y}{256} \end{cases} $$
解となる$(x,y)$の組全てについて$x+y$を足し合わせたものを半角英数字で入力してください。
2024年は閏年なので、2024年M月D日という日付が存在するような$(M,D)$の組は366組存在します。このような組のうち、 $$\frac{2024}{M・D}$$ が整数となる組の個数を求めてください。
半角数字で入力してください。
$\text{n-テトロミノ}$とは、正方形を四つ、下のようにつなげた図形です。
orangekidくんはこの図形が大好きなので、下の図のような形をした画用紙からなるべく多くの$\text{n-テトロミノ}$を切り出したいです。 $\text{n-テトロミノ}$を裏返しの状態で切り出してもよいものとするとき、orangekidくんは最大何個の$\text{n-テトロミノ}$を切り出せるでしょうか。 「個」はつけずに、整数値のみで答えてください。
$12$桁の整数$111111111111$の素因数の総和を求めてください. 但し,素因数の1つとして4桁の素数が含まれます.
整数で答えてください.
$3$ つの自然数を積が $1000000$ となるように選ぶ方法は何通りありますか.
答えは正の整数値となるので, その整数値を半角で入力してください.
追記: 回答いただいた内容的に, $3$ つの自然数を区別するかどうかがわかりにくかったと思われるので追記します. この問題では $3$ つの自然数は区別しません. すなわち, $(1,10,100000)$ と $(10,1,100000)$ のように 並び替えただけの組は同一のものとみなします.