$n$ 以下の正整数のうち $n$ と互いに素なものの個数を表す $φ(n)$ を $a$ 回合成した関数を $φ^a(n)$ と書くとき、$φ^a(n)=1$ を満たす最小の $a$ が $8$ であるような $n$ の最小値と最大値の積を解答してください。
半角数字で入力してください。
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
一辺の長さが $12$ の正方形 $ABCE$ の外部に点 $D$ を、三角形 $CDE$ が正三角形になるようにとります。 正方形 $ABCE$ の外接円と直線 $DE$ の交点のうち $E$ でない方を $F$ とするとき、$AF^2$ の値を解答してください。
$$2^p+q^2=5r$$ を満たす $100$ 以下の素数の組 $(p,q,r)$ 全てにおいて,$pqr$ の総和を求めてください.
半角数字で解答してください.
円に内接する四角形 $ABCD$ の対角線の交点を $P$ としたとき, $$AB=14\, , AP=13\, ,AD=16\, ,BP=PD$$ が成り立ちました.このとき $AC$ の長さを求めてください.ただし求める答えは互いに素な正整数 $p,q$ を用いて $\dfrac{p}{q}$ と表せるので,$p+q$ を解答してください.
赤いボールと青いボールがそれぞれ十分に入っている袋から $50$ 個のボールを取り出して一列に並べました.このとき,次の条件を満たす取り出し方において,取り出した青いボールの個数としてあり得る値の総和を求めてください. ・連続する $3$ 個のボールの少なくとも $1$ つは赤いボールである.
正整数 $a,b$ の最大公約数は $12$ ,最小公倍数は $360$ でした.このとき $(a,b)$ としてあり得る組すべてについて $a+b$ の総和を求めてください.
実数 $a,b$ が $a+b=10$ を満たすとき,$a^3+b^3$ の最小値を求めてください.
https://pororocca.com/problem/19/ こちらの問題の設定で,「裏裏裏裏裏表表表表表」というピザの塔ができるような調理は何通りあるか答えなさい.
半角数字で入力してください.
$a,b,c$ を実数とする。次の連立方程式を解け。
$$ a^2-4b-1=0\\ b^2-8c+28=0\\ c^2-6a+2=0\\ $$
a,b,cを半角数字として(a,b,c)で解答してください。無理数などを使いたい場合はTeXコマンドを使用してください。
$\pi$ と $\dfrac{355}{113}$ はどちらが大きいか。ただし必要があれば積分
$$ \int_0^1\frac{x^8(1-x)^8(25+816x^2)}{3164(1+x^2)}dx $$
を計算せよ。
piまたは 355/113 で解答してください。
pi
355/113
(1) $a,b$ を整数でない正の有理数とする。 $a^b$ は常に無理数か。
(2) $a$ を整数でない正の有理数とする。 $a^a$ は常に無理数か。
(3) $a,b$ を正の無理数とする。 $a^b$ は常に無理数か。
(4) $a$ を正の無理数とする。 $a^a$ は常に無理数か。
解答欄に改行区切りで O (オー)または X (エックス)を記述せよ。正解判定は各行に対して行われ、完答のみ正解となる。
O
X
(1) 定積分
$$ \int_0^1 \frac{x\log x}{(x+1)^2}dx $$
の値を求めよ。
(2) 関数列 ${f_n(x)}$ を
$$ f_{n+1}(x)=(x^x)^{f_n(x)},\quad f_1(x)=x^x $$
で定める。定積分
$$ \int_0^1(x^x)^{{(x^x)}^{(x^x)\cdots}}dx:=\int_0^1\lim_{n\to \infty} f_n(x)\ dx $$
の値を求めよ。ただしテトレーション $x^{{x^{x\cdots}}}$ は底 $x$ が $e^{-e}<x<e^{1/e}$ のとき収束することは証明せずに用いて良い。
この問題の正解判定は出題者により手動で行われるため、判定までに時間がかかることがある。
「ボ」と「ー」からなる文字列のうち,以下の条件を満たすものをボー文字列と呼ぶことにします.
条件:長音記号「ー」が文字列の先頭にくることはなく,連続して現れない.
例えば,「ボボー」や「ボーボボ」はボー文字列ですが,「ーボー」や「ボボーー」はボー文字列ではありません.
ボー文字列に対して,次の操作を行うことを考えます.
操作:ボー文字列に対して,次のうちいずれか一方を行う.
ただし,得られた文字列はボー文字列でなければならない.
1文字「ボ」から始めて,ボー文字列に対してくり返し操作を行い $n$ 文字からなるボー文字列が得られたとします.異なる操作の仕方の総数を $a_n$ とするとき,$a_{10}$ を求めなさい.