階乗の和

nanohana 自動ジャッジ 難易度: 数学 > 高校数学
2024年10月17日10:03 正解数: 9 / 解答数: 11 (正答率: 81.8%) ギブアップ数: 0
整数 階乗

全 11 件

回答日時 問題 解答者 結果
2024年11月15日23:08 階乗の和 ゲスト
正解
2024年10月25日10:10 階乗の和 ゲスト
正解
2024年10月24日17:44 階乗の和 nmoon
正解
2024年10月23日15:40 階乗の和 aaabbb
正解
2024年10月23日12:52 階乗の和 raka
不正解
2024年10月23日2:06 階乗の和 ゲスト
正解
2024年10月20日21:34 階乗の和 natsuneko
正解
2024年10月19日22:48 階乗の和 ゲスト
正解
2024年10月17日19:35 階乗の和 yura
正解
2024年10月17日12:53 階乗の和 katsuo_temple
正解
2024年10月17日12:43 階乗の和 katsuo_temple
不正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

積100万へのみちしるべ

kusu394 自動ジャッジ 難易度:
8月前

11

問題文

$3$ つの自然数を積が $1000000$ となるように選ぶ方法は何通りありますか.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

追記:
回答いただいた内容的に, $3$ つの自然数を区別するかどうかがわかりにくかったと思われるので追記します.
この問題では $3$ つの自然数は区別しません. すなわち, $(1,10,100000)$ と $(10,1,100000)$ のように
並び替えただけの組は同一のものとみなします.

幾何問題11/22

miq_39 自動ジャッジ 難易度:
14月前

6

問題文

円 $\omega$ 上に相異なる $2$ 点 $A,B$ がある.ただし,弦 $AB$ は $\omega$ の直径ではない.$A,B$ における $\omega$ の接線をそれぞれ $l,m$ とする.劣弧 $AB$ 上(端点を除く)に点 $P$ をとり,$P$ を通り $l$ に平行な直線と $\omega$ の交点であって,$P$ でないものを $C$ とし,$P$ を通り $m$ に平行な直線と $\omega$ の交点であって,$P$ でないものを $D$ とする.$l$ と直線 $BC$ の交点を $E$,$m$ と線分 $AD$ の交点を $F$ とする.また,線分 $AF$ と線分 $BE$ の交点を $X$,線分 $CF$ と線分 $DE$ の交点を $Y$ とする.$AB=\sqrt{69}$,$AC=3$,$BD=6$ がそれぞれ成り立っているとき,線分 $XY$ の長さは,互いに素な正整数 $a,c$ および平方因子を持たない $2$ 以上の整数 $b$ を用いて $\dfrac{a\sqrt{b}}{c}$ と表されるので,$a+b+c$ の値を求めよ.

解答形式

半角数字で解答してください.

整数

you2024 自動ジャッジ 難易度:
3月前

4

nを素数、o,kを正の整数とする。

2ⁿ+5⁰=k²

をみたすn,o,kの組(n,o,k)をすべて求めよ。

答えとなるn,o,pの値の総和を回答してください

求値問題8

Kinmokusei 自動ジャッジ 難易度:
3年前

4

問題文

共通部分を持たない2円と、その共通接線があります。図中の同じ色で示した線分の長さが等しいとき、2円の半径比を求めてください。

※図は正確でないことに注意

解答形式

大円の半径を$R_1$、小円の半径を$R_2$とすると、$R_1:R_2=\fbox ア:\fbox イ$です。文字列 アイ を解答してください。
例:$R_1:R_2=5:2$ であれば 52 と解答

確率

Ultimate 自動ジャッジ 難易度:
8月前

10

問題文

5進数で表された[2024]を2進数で表せ。

解答形式

数字のみでOK

座王001(N1)

shoko_math 自動ジャッジ 難易度:
10月前

12

問題文

以下の[条件]を満たす $3$ 桁の正の整数(つまり,$100$ 以上 $999$ 以下の正の整数)の組 $(A,B)$ すべてに対し,$A+B$ の値の総和を解答してください.

[条件] $A^2$ の下 $3$ 桁は $B$ であり,$B^2$ の下 $3$ 桁は $A$ である.

解答形式

半角数字で解答してください.

方程式の解の個数

tsukemono 自動ジャッジ 難易度:
10月前

12

問題文

$a$を定数とする。
このとき、$x$についての方程式$|x²+6x-7|-a=0$ の実数解の個数が3個になるような$a$の値を求めよ。

解答形式

a=𓏸𓏸というふうに解答してください。
また、全て半角で解答してください。
答えのみ入力してください。

3月前

24

問題文

正整数 $n$ を与えたところ,以下の等式をみたす実数 $x$ がちょうど $4$ つ存在しました.
$$x^2 - 18\sqrt{n}|x| - 30n + 1110 = 0$$$n$ のとり得る値の総和を求めて下さい.

解答形式

半角英数にし,答えとなる正整数値を入力し解答して下さい.

求面積問題19

Kinmokusei 自動ジャッジ 難易度:
3年前

5

問題文

2つの三角形ABCとQCRが図のように配置されています。各点が画像に記した条件を満たすとき、赤い三角形の面積を求めてください。

解答形式

半角数字で解答してください。

求面積問題21

Kinmokusei 自動ジャッジ 難易度:
3年前

5

問題文

3つの正五角形がそれぞれ1頂点ずつを共有して図のように配置されています。緑で示した三角形の面積が22のとき、赤い三角形の面積を求めてください。

解答形式

半角数字で回答してください。

求面積問題23

Kinmokusei 自動ジャッジ 難易度:
3年前

10

問題文

半円の内部に正方形を2つ、図のように配置しました。赤い線分の長さ(=2つの正方形の一辺の差)が3であるとき、青で示した部分の面積と緑で示された部分の面積の差を求めてください。

解答形式

半角数字で解答してください。

11月前

6

問題文

下図で、 四角形ABCDは平行四辺形です。四角形ABCDの面積が50㎠、五角形GHIJKの面積が5㎠のとき、十角形DGEHFIBJCK(青い部分)の面積は何㎠ですか。ただし、図は正確とは限りません。

解答形式

半角数字で入力してください。
例)10