鋭角三角形$ABC$において,外心を$O$とし,$\angle OAB$の二等分線と$BC$の交点を$D$とすると,$BD=OD$,$\angle AOD >90^\circ$を満たした.$AO=7$,$AD=10$であるとき,$BC$の長さを求めよ.
求める値は正整数$a,b$を用いて$a+\sqrt b$と表せるので,$a+b$を半角数字で解答してください.
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
$\angle B=90^{\circ}$なる直角三角形$ABC$において,$AC$の中点を$M$とすると,$BC$上(端点を除く)に$AB=MP=MQ$なる異なる$2$点$P$,$Q$をとることができ,$B$,$P$,$Q$,$C$はこの順にあった.また,$B$を直線$MQ$について対称移動した点を$X$とすると,$AX=11$,$PX=18$を満たした.このとき,$BC$の長さの$2$乗を求めよ.
求める値は互いに素な正整数$a,b$を用いて$\frac{a}{b}$と表せるので,$a+b$を半角数字で解答してください.
$\triangle ABC$において,内心を$I$,重心を$G$とし,$I$ から$BC$,$CA$,$AB$に下ろした垂線の足をそれぞれ$D$,$E$,$F$とすると,$G$は$EF$上にあり,$IG=1$,$BD:DC=3:5$を満たした.このとき,$\triangle ABC$の周長の$2$乗を求めよ.
求める値は互いに素な正整数$a,b$を用いて$\frac{a}{b}$と表されるので,$a+b$を半角数字で解答してください.
$∠BAC=30°$、$BC =3$である$△ABC $について、$AB$の最大値を解答してください。
半角数字で解答してください。
外接円の直径が$5$,$AB:AD=5:7$の内接四角形$ABCD$において,$\triangle ABC$の内心,$B$傍心をそれぞれ$I_1$,$I_B$とし,$\triangle ADC$の内心,$D$傍心をそれぞれ$I_2$,$I_D$とすると,$I_1$,$I_2$,$I_B$,$I_D$は同一円周上にあり,$I_1I_B\cdot I_2I_D=40$を満たした.$AC$の中点を$M$としたとき,$BM+DM$を求めよ.
$AB=13,BC=14,CA=15$ を満たす三角形 $ABC$ において、外心を $O$、辺 $AB$ の中点を $M$、辺 $AC$ の中点を $N$、$A$ から辺 $BC$ に下ろした垂線の足を $D$ とします。また、円 $DMN$ と $AD$ の交点を $X$、$MN$ について $X$ と対称な点を $Y$ とします。このとき四角形 $BCOY$ の面積を求めてください。
半角数字で入力してください。
$\mathrm{AB=AC}$ の直角二等辺三角形 $\mathrm {ABC}$ がある。点 $\mathrm D$ を、直線 $\mathrm{AD}$ と $\mathrm{BC}$ が平行となるように取ったところ、$\mathrm{BD}=10,\mathrm{CD}=7$ であった。このとき $$\mathrm{AB}^4 + \mathrm{AD}^4 =\fbox{アイウエ}$$ である。ただし $\mathrm{XY}$ で線分 $\mathrm{XY}$ の長さを表すものとする。
ア〜エには、0から9までの数字が入る。 文字列「アイウエ」を半角で1行目に入力せよ。 2行目以降に改行して回答すると、不正解となるので注意せよ。
図の条件の下で、緑の線分の長さ $x$ を求めてください。
$x^2$ の値を半角数字で解答してください。
図の条件の下で、青で示した三角形の面積 $x$ を求めてください。 ※ regular hexagon:正六角形
$x$ の値を半角数字で解答してください。
$728^{(729^{730})} + 730^{(729^{728})}$ は $3$ で最大何回割れますか.
半角数字で解答してください.
2024^2023の正の約数の個数はいくつか?
半角で回答 例)100
一辺の長さが $12$ の正方形 $ABCE$ の外部に点 $D$ を、三角形 $CDE$ が正三角形になるようにとります。 正方形 $ABCE$ の外接円と直線 $DE$ の交点のうち $E$ でない方を $F$ とするとき、$AF^2$ の値を解答してください。
$4$ 点 $A,B,C,D$ は同一円周上にあり,その内部(辺上を含まない)に点 $P$ をとります. また,線分 $AP,BP,CP,DP$ の垂直二等分線をそれぞれ $a,b,c,d$ とします. $a,b$ の交点を $E$,$b,c$ の交点を $F$,$c,d$ の交点を $G$,$d,a$ の交点を $H$ とすると,$4$ 点 $E,F,G,H$ は同一円周上にあり,四角形 $EFGH$ の二本の対角線は $P$ で交わりました. そして,以下が成立しました: $$HP=5,\quad HE=11,\quad EF=16$$ このとき,$HG$ の長さの二乗は互いに素な正整数 $a,b$ を用いて $\dfrac{b}{a}$ と表せるので,$a+b$ を解答してください.
非負整数を半角で入力してください.