2のべき乗と三角形

kusu394 自動ジャッジ 難易度: 数学 > 競技数学
2024年10月28日18:29 正解数: 3 / 解答数: 4 (正答率: 75%) ギブアップ数: 0

全 4 件

回答日時 問題 解答者 結果
2024年10月30日22:42 2のべき乗と三角形 ammonitenh3
正解
2024年10月30日22:41 2のべき乗と三角形 ammonitenh3
不正解
2024年10月29日16:08 2のべき乗と三角形 aaabbb
正解
2024年10月28日19:48 2のべき乗と三角形 orangekid
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

孤独な頂点

kusu394 自動ジャッジ 難易度:
6月前

3

問題文

正八角形 $P_1P_2P_3P_4P_5P_6P_7P_8$があり, 各頂点に $0,1,2$ のいずれかの数字を $1$ つずつ書き込みます.
頂点 $P_i$ に書かれた数字のことを, $f(P_i)$ で表すこととします.

正八角形の頂点 $P_i$ が"孤独な頂点"であるとは, $f(P_i) \neq f(P_{i-1})$ かつ $f(P_i) \neq f(P_{i+1})$ を満たすことと定義します.
ただし, 便宜上 $f(P_0)=f(P_8),\ f(P_9)=f(P_1)$ であるとします.
また, 正八角形の"孤独な頂点"の個数を"孤独度"と呼ぶことにします.

正八角形の頂点に数字を書き込む方法は $3^8$ 通りありますが, それらすべてについて"孤独度"の総和を求めてください.

例:
$$(f(P_1), f(P_2), f(P_3), f(P_4),f(P_5), f(P_6), f(P_7), f(P_8)) = (0,1,2,1,2,1,2,0)$$ のときは $P_2,...,P_7$ が"孤独な頂点"となるので, この数字の書き込み方の"孤独度"は $6$ となります.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

角の3等分線と円

Calculator 自動ジャッジ 難易度:
18日前

2

問題文

内接五角形$ABCDE$があり、$∠BAC$=$∠CAD$=$∠DAE$である。
また、$AB=12$、$AC=17$、$AD=20$である。
このとき、$AE$の長さは互いに素な正の整数$p,q$を用いて$\frac{p}{q}$と表せるので$p+q$を解答してください。

解答形式

半角で解答してください。


問題文

次の式を満足す実数 $N$ を求めなさい.

$$\sum_{k=1}^{2024}(2025-k) \cdot 2024^k \cdot 2025^{2024-k} = 2024^N$$

解答形式

$N$ をそのまま入力してください.


問題文

$f_0=0,f_1=1,f_{n+2}=f_{n+1}+f_n$で定義された数列において、$f_p$が$p$の倍数となるような素数$p$を全て求めてください。

解答形式

計算式全てを書く必要はないので論証の概略と答えを書いてください。

突き刺す直線

kusu394 自動ジャッジ 難易度:
5月前

2

問題文

座標平面において $A(0,4000),B(-3000,0),C(3000,0)$ をとります.次の条件をすべて満たすような直線 $\ell$ として考えられるものは何通りありますか.

  • $\ell$ と直線 $AB$ は点 $P$ で交わり, $P$ の $x$ 座標は $-3000$ より大きく $0$ より小さい.
  • $\ell$ と直線 $AC$ は点 $Q$ で交わり, $Q$ の $x$ 座標は $3000$ より大きい.
  • 線分 $BP$ の長さと線分 $CQ$ の長さは整数値である.
  • $\ell$ と $x$ 軸の交点を $R$ とするとき,$\triangle RPB$ と $\triangle RQC$ の面積は等しい.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

没っぽい幾何

katsuo_temple 自動ジャッジ 難易度:
16日前

3

問題文

鋭角三角形$ABC$について、$A,B,C$から対辺に下ろした垂線の足をそれぞれ$D,E,F$とする。$△ABC$の外接円と直線$EF$の交点の内、劣弧$AB$側の交点を$G$、劣弧$AC$側の交点を$H$とする。直線$BG$と直線$DF$の交点を$I$としたとき、$A.I,H$は共線であった。このとき、以下が成立した。
$$
∠C=60° BC=8
$$
このとき、$AC$の長さは自然数$a.b$を用いて$a+√b$と表せられるので、$a+b$の値を求めて下さい。

解答形式

半角で解答して下さい。

約数の個数の方程式

kusu394 自動ジャッジ 難易度:
6月前

16

問題文

自然数 $x$ に対して, $d(x)$ で $x$ の正の約数の個数を表します.
$$d(4n-1)+d(4n)=8$$ を満たす自然数 $n$ について, 小さいほうから $7$ 個の総和を求めてください.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

追記
=8 のところ =6 と書いてしまっていたため訂正しました
大変申し訳ありません

不等式

sdzzz 自動ジャッジ 難易度:
5月前

2

問題文

正の実数 $x,y,z$ が,
$$
(6x+15y+8z)xyz=5
$$
を満たす時, $(5x+5y+4z)^2$ の最小値を求めてください.

解答形式

半角数字で入力してください

なんかの和

YoneSauce 自動ジャッジ 難易度:
40日前

3

問題文

$$ \sum _{k=0}^{2024} \dfrac{{}_{2024}\mathrm{C}_{k}}{2k+1}(-1)^{k}$$
は互いに素な二つの整数 $p,q$ を用いて $\dfrac{p}{q}$ と表せます. $p$ は $2$ で最大何回割り切れますか?

解答形式

非負整数を半角数字で答えてください

大きい数の位の値

noname 自動ジャッジ 難易度:
19日前

3

問題文

$1998^{2024}$の下$2$桁を求めよ。

解答形式

1行目に半角整数で入力してください。

自作3

soka 自動ジャッジ 難易度:
7月前

3

問題

$n=1,2,3...、k=0,1,2...n-1$とします。

また、不等式$$a_1<a_2<...<a_n≦n$$

を$A_0$とし、$A_0$の$n-1$個の$<$のうち$k$個が$≦$に置き換わったものの一つを$A_k$とします。

ここで、$A_k$をみたす正整数$(a_1,a_2...a_n)$の組の総数を$N_k$とするとき、$N_0+N_1+...+N_{n-1}$を$n$を用いて表してください。

解答形式

$C$(コンビネーション記号)を用いて、$aCb$の形で表すことができるので、$a,b$の間に半角スペースを入力して、$a$ $b$を半角英数字で入力してください。
追記:ただし、$b$は$2$つの値が考えられるので、小さい方を入力してください。
例)$nC2→n$ $2,2nCn→2n$ $n$

※初めの解答では指定がなく間違い判定になった方がいたので修正させていただきました、、

tanと等差数列

kusu394 自動ジャッジ 難易度:
6月前

3

問題文

座標平面上の $2$ 点 $A(14,0),B(-14,0)$ を考えます. また, $x$ 軸上にない格子点 $C (p,q)$ を $\triangle ABC$ が直角三角形とならないようにとります.
$$\tan \angle{ABC},\ \tan \angle{BCA},\ \tan \angle{CAB}$$
がこの順に等差数列となるとき, 点 $C$ として考えられるすべての座標に対して $p^2+q^2$ の総和を解答してください. ただし, 格子点とは $x$ 座標も $y$ 座標も整数であるような点のことを指します.

解答形式

答えは正の整数となるので, その整数値を半角で解答してください.