OMCBにありそう

sha256 自動ジャッジ 難易度: 数学 > 競技数学
2024年11月2日16:55 正解数: 5 / 解答数: 16 (正答率: 31.3%) ギブアップ数: 0
整数 数列

問題文

初項が$1(a_1=1)$の数列{$a_n$}は、任意の正整数$n$に対し
$$
a_{n+1}^3-10a_na_{n+1}^2+31a_n^2a_{n+1}-30a_n^3=0
$$
を満たしている。
$a_{60}$としてあり得る値すべての総積を求めたい。
ただし答えは非常に大きいので、答えの正の約数の個数を1000で割ったあまりを答えよ。

解答形式

$0$以上$999$以下の整数を半角英数字で入力してください。

(11/7:一部問題文を修正)


ヒント1

因数分解


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

不等式

sdzzz 自動ジャッジ 難易度:
7月前

2

問題文

正の実数 $x,y,z$ が,
$$
(6x+15y+8z)xyz=5
$$
を満たす時, $(5x+5y+4z)^2$ の最小値を求めてください.

解答形式

半角数字で入力してください

自作3

soka 自動ジャッジ 難易度:
9月前

3

問題

$n=1,2,3...、k=0,1,2...n-1$とします。

また、不等式$$a_1<a_2<...<a_n≦n$$

を$A_0$とし、$A_0$の$n-1$個の$<$のうち$k$個が$≦$に置き換わったものの一つを$A_k$とします。

ここで、$A_k$をみたす正整数$(a_1,a_2...a_n)$の組の総数を$N_k$とするとき、$N_0+N_1+...+N_{n-1}$を$n$を用いて表してください。

解答形式

$C$(コンビネーション記号)を用いて、$aCb$の形で表すことができるので、$a,b$の間に半角スペースを入力して、$a$ $b$を半角英数字で入力してください。
追記:ただし、$b$は$2$つの値が考えられるので、小さい方を入力してください。
例)$nC2→n$ $2,2nCn→2n$ $n$

※初めの解答では指定がなく間違い判定になった方がいたので修正させていただきました、、

整数

you2024 自動ジャッジ 難易度:
3月前

4

nを素数、o,kを正の整数とする。

2ⁿ+5⁰=k²

をみたすn,o,kの組(n,o,k)をすべて求めよ。

答えとなるn,o,pの値の総和を回答してください

2月前

11

問題文

$37^{2024}$ の十の位と一の位の数をもとめてください.

解答形式

$37^{2024}$ の十の位と一の位の数を空白で区切って1行に入力してください.
例えば $37^{2024}$ の十の位が $0$ で一の位が $2$ の場合は 0 2 のように入力してください。

3月前

15

問題文

$1$ 以上 $12$ 以下の整数からなる集合を $U$ とし,空でない $U$ の部分集合 $S, T$ を
$$S \cup T = U,S \cap T = \phi$$となるよう定めたところ,$S$ の元の和と $T$ の元の平方和が等しくなりました.このような集合の組 $(S, T)$ すべてに対する「$S$ の元の和」の総和を解答して下さい.


たとえば,
$$S = \{1, 2, ..., 9\},T = \{10, 11, 12\}$$であるなら,$S$ の元の和は $1 + 2 + \cdots + 9 = 45$ と計算され,$T$ の元の平方和は $10^2 + 11^2 + 12^2 = 365$ と計算されます.

解答形式

半角英数にし、答えとなる正整数値を入力し解答して下さい.

Sigma Problem

eq_K 自動ジャッジ 難易度:
7月前

11

問題文

以下の値を素数 $2017$ で割った余りを解答してください。ただし、$\lfloor x\rfloor$ は $x$ 以下の最大の整数を表します。

$\displaystyle\sum_{k=1}^{2023} \left\lfloor\dfrac{3}{7}×2^k\right\rfloor(-1)^{k+1}$

解答形式

非負整数を半角で入力してください.

対称式の総和②

nanohana 自動ジャッジ 難易度:
7月前

6

問題文

$$
x+ \frac{1}{x} =1
$$
のとき以下の値を求めよ
$$
\sum_{k=1}^{10^m}(x^{k}+\frac{1}{x^{k}}) \quad
$$
ただしmは自然数である。

回答形式

半角数字で答えてください。
また、複数個の値を取りうる場合は値の小さい順に改行して入力してください。


問題文

正整数 $x, y, z$ が以下の等式を同時にみたすとき,積 $xyz$ の値としてあり得るものの総和を求めてください.

$$x + y + z = 48,x^2 + y^2 + z^2 = 1110$$

解答形式

半角英数にし,答えとなる正整数値を入力し解答して下さい.

階乗の和

nanohana 自動ジャッジ 難易度:
3月前

11

問題文

$$a,bは負でない整数とする。$$$$このときa!+b!=(a+b)!$$$$を満たす組(a,b)を全て求めよ。$$

解答形式

組(a,b)の個数を入力してください。

下位5桁

Ultimate 自動ジャッジ 難易度:
8月前

7

問題文

101^100の下位5桁(万の位まで)を求めよ。

解答形式

半角でお願いします。

整数

kiriK 自動ジャッジ 難易度:
2月前

22

$自然数Xについて、Xの各位の数字を足し合わせた値をk(X)とおく。$
$4桁の自然数A,Bにおいて$$$
\begin{eqnarray}
\frac{k(A)}{k(B)}=\frac{A}{B}=n
\end{eqnarray}
$$$ (nは2以上の整数)$
$のとき、Aの取りうる値は何個あるか。$
半角数字のみで答えよ

SMC100-94

MARTH 自動ジャッジ 難易度:
14月前

8

$100\times 100$ のマス目があります. 上から $i$ 行目, 左から $j$ 列目のマスを $100(i-1)+j$ と呼ぶことにします. SMC 君は一般的な $6$ 面サイコロを $10000$ 回振り, $i$ 回目に振って出た目をマス $i$ に書き込みます. このとき, 以下の条件を満たす確率を $p$ とするとき, $6^{10000}p$ は整数になるので, 素数 $3299$ で割った余りを求めてください.

  • 任意の行について, その行のマスに書かれた整数の総和は偶数.
  • 任意の列について, その列のマスに書かれた整数の総和は $3$ の倍数.