$0$時$0$分〜$23$時$59$分とする時刻$A$時$B$分について、$60A+B,100A+B$が共に平方数となるとき、$A×B$の総和を求めよ。
半角数字で解答して下さい。
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
整数 $x,y$ と数列 $z_k=|x-k|+|y-k|$ に対し,次の命題は $xy\leqq 7!$ の反例を何組もつか.
半角数字で入力してください.
設問1
数列 ${a_n}$ が $a_1 = 1, a_2 = 4$ および漸化式 $a_{n+2} - 4a_{n+1} + 4a_n = n \cdot 2^n$ ($n \ge 1$) を満たすとき、一般項 $a_n$ を求めよ。
半角1スペースで答えのみ
設問9
数列 ${a_n}$ ($a_n \in {0,1,2,3,4}$) が $a_1=1, a_2=1$ および漸化式 $a_{n+2} \equiv a_{n+1} + a_n \pmod{5}$ ($n \ge 1$) を満たすとする。$a_{2025}$ の値を求めよ。
例)ひらがなで入力してください。
設問4
数列 ${a_n}$ が $a_0=1, a_1=0, a_2=-1$ および漸化式 $$ a_{n+3} - 3a_{n+2} + 3a_{n+1} - a_n = 2^n \quad (n \ge 0) $$ を満たす。一般項 $a_n$ を求めよ。
∮(-π/6→π/3) ((sinx)^3)/(sinx+cosx)dxの値を求めよ。
解答は π/a-(√ b+c)/d-(1/e)log(√f+g)の形になります。 a,b,c,d,e,f,gに当てはまる自然数を順に半角で答えてください。 また、1つの値の間は1つずつ空白を開けるようにしてください。 (例)a=2, b=3, c=11,d=5,e=6,f=7,g=8の場合、 2 3 11 5 6 7 8
$f(x)=\frac{3-x}{ \sqrt{3(x+2)(-2x+1)}}$ $ (-2<x<0)$ とする $f(x)$ が最小値を取るときの $x$ の値を求めよ
解答は$-\frac{㋐}{㋑}$の形で表されるので、1行目に㋐を、2行目に㋑を半角数字で入力してください
$a>0,b>0$ のとき、 $a^{4}+4a^{3}b+2a^{2}b^{2}+4ab^{3}+b^{4}\geq0$ を示せ
記述形式でお願いします 入力がめんどくさい方は、紙に書いて、twitterのDMに送ってください
11の100乗(11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕ 11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕ 11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕ 11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕ 11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11)の下6桁 を、パスカルの三角形を利用して求めなさい。ただし、1234567890の下6桁は567890です。
$$ a_1 = 1,\quad a_2 = 2,\quad a_n = 5a_{n-1} - 6a_{n-2} \quad (n \geq 3) $$
$a_{10}$を求めなさい。
次を満たすような正整数の組 $(x,y,z)$ をすべて求めてください. $$2^x+9^y+2025=2009^z-65-28$$
簡単な証明をお書き下さい.
次の関数が $|x-a|\leqq 1$ のもとで負の値と素数の値域幅をとるとき,$\sqrt b$ の平均を求めよ.
$100$ 倍した整数部分を半角数字で入力してください.
※ 問題を一部修正しました.今後も手直しが続く可能性があります.
下の図において, $\triangle ABC$ と $\triangle BDE$ は二等辺三角形です. さらに, $$\angle ABC=\angle BDE=90^\circ,\hspace{1pc} \angle EBC=60^\circ\\ BC=32, \hspace{1pc} DB=6\sqrt{2}$$ が成立します. 線分 $AE$ の中点を $M$ とするとき, 線分 $DM$ の長さを求めてください. ただし, $E$ は $\triangle ABC$ の内側にあります.
答えは正の整数値となるので, その整数値を半角で入力してください.