全 7 件
感想を投稿してみましょう!この感想は正解した人だけにしか見えません!
この問題を解いた人はこんな問題も解いています
一辺の長さが1である正方形を $n$ 個、頂点が合うように辺同士でつなげてできる図形を $n$-オミノ とする。ただし、$n=1$ の場合は1つの正方形である。また、$n$-オミノが多角形をなすとき($n$-オミノで囲まれた領域が存在しないとき)、これを $n$-オミノ多角形 とする。
$\rm{S_n}$が$n$-オミノ多角形であるとき、$\rm{S_n}$の辺の数が2024となるような $n$ の最小値を求めよ。
答えは整数となるので、半角で入力してください。
$自然数Xについて、Xの各位の数字を足し合わせた値をk(X)とおく。$ $4桁の自然数A,Bにおいて$$$ \begin{eqnarray} \frac{k(A)}{k(B)}=\frac{A}{B}=n \end{eqnarray} $$$ (nは2以上の整数)$ $のとき、Aの取りうる値は何個あるか。$ 半角数字のみで答えよ
4x4のマス目のうち、0個以上のマスを選んで1つずつ地雷を置き、すべてのマスに周囲8マス(自身を含まない)の地雷の数を書きます。 地雷を置くすべてのパターンにおいて書かれている数字の総和を求めてください。
半角数字で入力してください。
4x4のマス目を1x2のタイル8枚で敷き詰める方法は何通りありますか?
4x4のマスのうち1個以上に、対角線を1本ずつ引いたとき、全ての対角線がループの一部分であるものは何通りですか? 但し、「ループの一部分である」とは、 全ての対角線の端が、ちょうど1つの別の対角線の端と同位置にあることを意味します。
4x4のマス目を境界線で区切り、14分割する方法は何通りありますか?
正整数 $n$ に対して $n^{10n}$ を $31$ で割ったあまりを $f(n)$ としたとき, $$\sum_{k=1}^{12000} f(k)$$ の値を求めてください.
半角英数字で回答してください.
緑色の正方形ABCDと、紫色の正方形EFGHがあり、それぞれ1辺6cmである。点Aと点E、点Bと点F、点Cと点G、点Dと点Hがそれぞれ重なるように正方形を重ねる。(緑色の正方形が上にある。) そして辺ABを3等分する点をとり、点Aに近い方を点Iとする。また辺EFを3等分する点をとり、点Fに近い方を点Jとする。 今、緑色の正方形のみを重心を中心として回転させ、点Iと点Jが重なったところで回転を止めた。このとき、上から見える紫色の部分の面積の合計はいくらか。
答えは◯cm^2となるので、◯の部分のみを答えてください。
2年前(小6)のときにルービックキューブを触りながら作った問題です。問題文が長ったらしくて読みにくいと思いますがご了承ください。ちなみにこの問題は当時scratchにも投稿しました。
$AB<AC$ で,線分 $AB,AC$ の長さが正整数値である三角形 $ABC$ について,半直線 $CB$ 上で線分 $BC$ 上でないところに点 $D$ ,半直線 $BC$ 上で線分 $BC$ 上でないところに点 $E$ をそれぞれ置く.また,三角形 $ADE$ の外接円と直線 $AB,AC$ との交点のうち,$A$ でないほうをそれぞれ $P,Q$ とする.$4$ 点 $B,P,Q,C$ が同一円周上にあり,$DB=9,BC=45,CE=5$ のとき,線分 $PQ$ の長さとしてあり得る値の総和は互いに素な正整数 $a,b$ を用いて $\displaystyle\frac{a}{b}$ と表せるので,$a+b$ を解答してください.
命題「aⁿ+bⁿ=cⁿ (n整数、a,b,cの最大公約数1)を満たす全ての自然数a,b,cは互いに素である」の真偽を述べよ
真ならば真、偽ならば偽と入力
$a^2+b^2+c^2+d^2+e^2=13053769$を満たす自然数$(a,b,c,d,e)$の組を1つ求めよ。ただし、$a<b<c<d<e$とする。
a,b,c,d,e,fの順で、間を半角スペースで区切り解答してください。 (例)$(a,b,c,d,e)=(1,2,3,4,5)$だった場合 →1 2 3 4 5
以下によって定義される整数 $N$ を素数 $13907$ で割った余りを求めてください.$$N=\prod_{k=1}^{13906} (k^2+2025)$$
13906以下の非負整数で解答してください