問題

noppi_kun 自動ジャッジ 難易度: 数学 > 競技数学
2025年4月1日22:00 正解数: 2 / 解答数: 14 (正答率: 14.3%) ギブアップ数: 8
この問題はコンテスト「USOSMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM...」の問題です。

全 14 件

回答日時 問題 解答者 結果
2025年4月1日22:35 問題 Furina
不正解
2025年4月1日22:21 問題 uran
不正解
2025年4月1日22:19 問題 natsuneko
正解
2025年4月1日22:19 問題 masa_kasa
不正解
2025年4月1日22:18 問題 masa_kasa
不正解
2025年4月1日22:18 問題 masa_kasa
不正解
2025年4月1日22:16 問題 ir0z
不正解
2025年4月1日22:15 問題 0__citrus
不正解
2025年4月1日22:14 問題 sirasu
不正解
2025年4月1日22:12 問題 natsuneko
不正解
2025年4月1日22:11 問題 tria
正解
2025年4月1日22:11 問題 natsuneko
不正解
2025年4月1日22:10 問題 ir0z
不正解
2025年4月1日22:03 問題 Nyarutann
不正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

連分数

simasima 自動ジャッジ 難易度:
1日前

46

問題文

正の有理数に対してスコアを次のように定義する。
有理数に対して正則連分数の数列を $[a_0;a_1,a_2,...,a_n]$とした時、$\sum^{n}_{i=0}a_i$
連分数を知らない人は下のWikipediaを見ても良いです
https://ja.wikipedia.org/wiki/%E9%80%A3%E5%88%86%E6%95%B0

例えば、$9$ のスコアは $9$ で、$\frac{7}{4}$ のスコアは $5$ で、$\frac{1}{7}$ のスコアは $7$ です。

スコアが $10$ であるような正の有理数の中で $100$ 番目に小さいものを解答してください。

解答形式

答えは互いに素な正整数 $a,b$ を用いて、$\frac{b}{a}$ と表せるので $a+b$ を解答してください。

提出制限

この問題の提出制限は $5$ 回です。

Death Game

simasima 自動ジャッジ 難易度:
1日前

39

問題文

左から右に一列に並んだ $n$ 色のボールがあります。AliceとBobはボールを使ったデスゲームで遊ぶようです。
Aliceが先手でそれ以降は交互に手番を行います。
各手番のプレイヤーは隣り合う $2$ つのボールを選択し、その位置を入れ替えます。この時、その $2$ つのボールの組が(自分相手関係なく)過去に選ばれていた場合、全てのボールが大爆発し、手番のプレイヤーは死にます。死ななかった方が勝ちです。

例: $n=3$ の場合
最初のボールの並びを (赤,青,黄) とします。
Aliceの手番
赤と青を入れ替えました。盤面:(青,赤,黄)
Bobの手番
赤と黄を入れ替えました。盤面:(青,黄,赤)
Aliceの手番
黄と青を入れ替えました。盤面:(黄,青,赤)
Bobの手番
赤と青を入れ替えようとしますが、赤と青の組は最初のターンで選ばれています。全てのボールが大爆発し、Bobは死にました。
Aliceの勝利です。

Bobが死んでしまったのでゲームが出来なくなってしまいました...

あなたが代わりに参加して下さい。
あなたが負けた場合は全ての問題が大爆発し、得点が-5000兆点になります。
今回は $n=333$ です。あなたが先手か後手を選んでください。

解答形式

あなたが選ぶ手番を先手か後手の漢字二文字で解答してください。
この問題に不正解の判定を受けた場合、あなたのUSOMO004での得点は $-5000000000000000$ 点になります。

提出制限

この問題の提出制限は $1$ 回です。

KOTAKE杯004(B)

MrKOTAKE 自動ジャッジ 難易度:
26日前

22

問題文

垂心を$H$とする鋭角三角形$ABC$があり
$AB \cdot CH=30,BC \cdot AH=28,CA \cdot BH=26$
が成立したので$AC$の長さの$2$乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

余りの計算

noname 採点者ジャッジ 難易度:
13月前

9

$1^{2024}+2^{2024}+3^{2024}+4^{2024}+5^{2024}+…+2023^{2024}+2024^{2024}$を$17$で割った余りを求めよ。

元の問題を書き換えて別の問題にしました。前の問題は解いていただけなかったので別の問題に変えました。

解答形式

余りを自然数でお答えください

40000000001

simasima 自動ジャッジ 難易度:
1日前

37

問題文

$40000000001$ は二つの異なる素数の積で表されます。その二つの素数のうち小さい方を解答してください。

解答形式

非負整数で解答して下さい。

提出制限

この問題の提出制限は10回です。

Go to Heaven

simasima 自動ジャッジ 難易度:
1日前

32

問題文

$$\sum^{100}_{k=1}\left\lfloor \sqrt[3]{1001001-k^3}\right \rfloor$$
を $2$ で割った余りはいくつですか?

解答形式

非負整数で解答してください。

提出制限

この問題の提出制限は $1$ 回です。

第1回琥珀杯 大問4

Kohaku 採点者ジャッジ 難易度:
50日前

7

$a^2+b^2+c^2+d^2+e^2=13053769$を満たす自然数$(a,b,c,d,e)$の組を1つ求めよ。ただし、$a<b<c<d<e$とする。

解答形式

a,b,c,d,e,fの順で、間を半角スペースで区切り解答してください。
(例)$(a,b,c,d,e)=(1,2,3,4,5)$だった場合
→1 2 3 4 5

N4

orangekid 自動ジャッジ 難易度:
9月前

10

問題文

ある数$N$は$714$進法で$\underbrace{1818\dots1818}_{\text{1430個}}0$と表されます。$N$の素因数に含まれない最小の素数は何でしょう?

解答形式

半角数字で入力してください。

KOTAKE杯004(C)

MrKOTAKE 自動ジャッジ 難易度:
26日前

24

問題文

$∠A$が鋭角であり$AB=AD,BC=CD=7,∠ABC=∠CDA=90°$を満たす四角形$ABCD$がある.線分$AB$,線分$AD$の中点をそれぞれ$M,N$とし,直線$MN$と直線$BC$の交点を$P$とすると$AP=24$であったので$AC$の長さの$2$乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

B

Nyarutann 自動ジャッジ 難易度:
39日前

19

問題文

$AD$ と $BC$ が平行であるような等脚台形 $ABCD$ において,$AB, BC, CD, DA$ の中点を $K, M, N, O$ ,$AC$ と $BD$ の交点を $E$ としたとき,以下が成り立ちました.
$$
MO=24 NE=\dfrac{\sqrt{1115}}{2} KO=20
$$このとき,四角形 $NEKO$ の面積としてあり得る値の総和を求めてください.

解答形式

答えは正整数になるので,半角数字で解答してください.

KOTAKE杯004(D)

MrKOTAKE 自動ジャッジ 難易度:
26日前

14

問題文

$AB<AC$の三角形$ABC$があり,内心を$I$,直線$AI$と三角形$ABC$の外接円の交点を$M(≠A)$とする.$∠A$内の傍接円と辺$BC$の共有点を$P$としたとき$4$点$BIPM$は共円であり,$BI=5,BC=11$であった.このとき$IP$の長さは正の整数$a,b$と平方因子を持たない正の整数$c$を用いて,$a−b \sqrt{c}$と表せるので$a+b+c$を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

Triangle T

Lim_Rim_ 自動ジャッジ 難易度:
5日前

2

問題文

三角形 $T$ の一つの辺の長さは平方数で,残りの辺の長さは素数であるとする.また,$T$ の面積は整数で,外接円の直径は素数であるとする.$T$ の各辺の長さを求めよ.

解答形式

$T$の3辺の長さの総和としてありうる値の総和を解答してください。(論証は解説を参照してください。)

備考

2018年3月の大学への数学「読者と作るページ」に掲載された問題です。