無限級数

tandainohito 自動ジャッジ 難易度: 数学 > 算数
2025年4月4日17:09 正解数: 0 / 解答数: 3 ギブアップ数: 0

全 3 件

回答日時 問題 解答者 結果
2025年4月8日1:35 無限級数 custard
不正解
2025年4月5日15:04 無限級数 ISP
不正解
2025年4月5日15:02 無限級数 ゲスト
不正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

E. 更に分割

G414xy 自動ジャッジ 難易度:
6月前

8

問題文

4x4のマス目のうち1つを、更に4x4に分割します。いくつかのマスで長方形を作るとき、何種類の長方形を作れますか。?
但し、同型でも場所が異なるなら違う種類と見なします。

解答形式

半角数字で入力してください。


問題文

一辺の長さが1である正方形を $n$ 個、頂点が合うように辺同士でつなげてできる図形を $n$-オミノ とする。ただし、$n=1$ の場合は1つの正方形である。また、$n$-オミノが多角形をなすとき($n$-オミノで囲まれた領域が存在しないとき)、これを $n$-オミノ多角形 とする。

$\rm{S_n}$が$n$-オミノ多角形であるとき、$\rm{S_n}$の辺の数が2024となるような $n$ の最小値を求めよ。

解答形式

答えは整数となるので、半角で入力してください。

大きい数の位の値

noname 自動ジャッジ 難易度:
5月前

6

問題文

$1998^{2024}$の下$2$桁を求めよ。

解答形式

1行目に半角整数で入力してください。

D. ループ

G414xy 自動ジャッジ 難易度:
6月前

75

問題文

4x4のマスのうち1個以上に、対角線を1本ずつ引いたとき、全ての対角線がループの一部分であるものは何通りですか?
但し、「ループの一部分である」とは、
全ての対角線の端が、ちょうど1つの別の対角線の端と同位置にあることを意味します。

解答形式

半角数字で入力してください。

F. 4分割

G414xy 自動ジャッジ 難易度:
6月前

55

問題文

$(0,0),(4,0),(0,4),(4,4)$を頂点とする正方形を、頂点が全て格子点上にある三角形4つに分割する方法はいくつありますか。
回転や裏返しをして同じ形になるものも区別するものとします。

解答形式

半角数字で入力してください。

連続する整数の積

noname 自動ジャッジ 難易度:
2月前

7

$n$を正の整数とします。連続する$10$個の整数の積$n(n+1)(n+2)(n+3)…(n+9)$が$2025^3$で割り切れるような$n$としてあり得る最小のものを求めてください。

解答形式

$n$の値を半角で入力してください。

第1回琥珀杯 大問3

Kohaku 自動ジャッジ 難易度:
2月前

23

問題文

$AB=DC=2,AD=3,AC=\sqrt{17}$を満たす等脚台形$ABCD$の面積を求めよ。

解答形式

互いに素な正整数$a,b$と平方因子を持たない正整数$c$を用いて$\frac{b\sqrt{c}}{a}$と表せるので、$abc$を解答してください。

そらさんの正12角形

akatukisola 自動ジャッジ 難易度:
11月前

5

問題文

正12角形ABCDEFGHIJKLの中心をOとし、半径をAOとする円Oを描くと、2つの図形の面積の差が2023になりました。ABの長さの2乗を求めなさい。但し、円周率は7分の22とします。

解答形式

例)解はa(b-√c)と表せるのでa+b+cを半角で回答してください。

簡単めな幾何問題

kiwiazarashi 自動ジャッジ 難易度:
7月前

5

問題文

緑色の正方形ABCDと、紫色の正方形EFGHがあり、それぞれ1辺6cmである。点Aと点E、点Bと点F、点Cと点G、点Dと点Hがそれぞれ重なるように正方形を重ねる。(緑色の正方形が上にある。) そして辺ABを3等分する点をとり、点Aに近い方を点Iとする。また辺EFを3等分する点をとり、点Fに近い方を点Jとする。
今、緑色の正方形のみを重心を中心として回転させ、点Iと点Jが重なったところで回転を止めた。このとき、上から見える紫色の部分の面積の合計はいくらか。

解答形式

答えは◯cm^2となるので、◯の部分のみを答えてください。

余談

2年前(小6)のときにルービックキューブを触りながら作った問題です。問題文が長ったらしくて読みにくいと思いますがご了承ください。ちなみにこの問題は当時scratchにも投稿しました。

よくわからないGame

Weskdohn 自動ジャッジ 難易度:
8月前

9

問題

Weskdohn君は,次のゲームを行うことになりました.

正$733$角形のマークが書かれたカードW:$W_1W_2 \ldots W_{733}$から一枚選ぶ操作をOPE1と言い,これを$X$回繰り返します.
但し$X$について次の事実がわかっています.

正$3$角形のマークが書かれたカードS:$S_1S_2 S_3$と正$281$角形のマークが書かれたカードN:$N_1N_2 \ldots N_{281}$
について,それぞれ一枚ずつ取り出す操作をOPE2といい,OPE2を973回繰り返した場合の数を$X$通りとする.


ゲームで選んだカードWの組み合わせは$Y$通りと書けるので,$Y_{[9]}$の下三桁$n$を求めて下さい.

但し,異なる番号が振られた同じ種類のカード(例えば$E_d$と$E_h$)は互いに区別できるとし,また$O_{[K]}$は,$O$を$K$進法で書いた時の値とします.

解答形式

求めた値を,半角で入力して下さい.
ex)答えが6106→6106と入力.
また,001のような数値が答えの場合は、0をなくさず001のまま回答して下さい.

C. 地雷

G414xy 自動ジャッジ 難易度:
6月前

13

問題文

4x4のマス目のうち、0個以上のマスを選んで1つずつ地雷を置き、すべてのマスに周囲8マス(自身を含まない)の地雷の数を書きます。
地雷を置くすべてのパターンにおいて書かれている数字の総和を求めてください。

解答形式

半角数字で入力してください。

整数の基本問題

Ultimate 自動ジャッジ 難易度:
11月前

7

問題文

5進数で表された[2024]を2進数で表せ。

解答形式

数字のみでOK