600A

MARTH 自動ジャッジ 難易度: 数学 > 競技数学
2025年4月5日20:00 正解数: 6 / 解答数: 25 (正答率: 24%) ギブアップ数: 2

全 25 件

回答日時 問題 解答者 結果
2025年9月20日2:44 600A tomorunn
正解
2025年9月20日1:35 600A tomorunn
不正解
2025年9月20日1:33 600A tomorunn
不正解
2025年8月20日20:47 600A ゲスト
不正解
2025年8月20日20:24 600A ゲスト
不正解
2025年8月20日19:26 600A kinonon
正解
2025年8月20日17:11 600A kinonon
不正解
2025年8月20日17:02 600A kinonon
不正解
2025年8月20日16:59 600A kinonon
不正解
2025年8月20日16:34 600A kinonon
不正解
2025年8月20日16:34 600A kinonon
不正解
2025年6月5日2:12 600A pomodor_ap
正解
2025年6月5日2:01 600A pomodor_ap
不正解
2025年6月5日1:50 600A pomodor_ap
不正解
2025年5月5日23:51 600A sulippa
不正解
2025年5月5日23:47 600A sulippa
不正解
2025年4月18日9:23 600A shukurimu_Az
不正解
2025年4月12日18:26 600A shukurimu_Az
不正解
2025年4月12日18:20 600A shukurimu_Az
不正解
2025年4月7日2:07 600A natsuneko
正解
2025年4月6日12:20 600A kurao
正解
2025年4月6日12:12 600A ZIRU
正解
2025年4月6日12:09 600A ZIRU
不正解
2025年4月6日12:08 600A kurao
不正解
2025年4月6日12:00 600A kurao
不正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

WMC(D)

Weskdohn 自動ジャッジ 難易度:
5月前

11

問題文

SKG学院の文化祭では,1から10の目が一つずつ書かれた十面体の歪んだダイスを配布しています.このダイス十個に$1$から$10$までの番号をつけることにしました.
ここで以下のような事実が分かっています.
また$1≦n≦10$を満たす任意の整数$n$について,番号$s$がついたダイスを一回振って$n$の目が出る確率を$a_{n^s}$と書くことにします.

・$a_{1^s}:a_{2^s}…a_{9^s}:a_{10^s}=1^s:2^s\cdots9^s:10^s$を満たす.

この十個のダイスを同時に一回振る時,出目の積の期待値を求めて下さい.

解答形式

半角数字で入力して下さい.

WMC(J)

Weskdohn 採点者ジャッジ 難易度:
5月前

14

問題文

聖くんと光くんはトランプゲームを行うことにした.

なお,$1$ から $13$ までの数字が書かれたトランプをそれぞれ四枚ずつ用いる.

ルールは以下の通り.
- 聖くんはトランプを $1$ 枚から$3$ 枚まで引くことができる.
- 光くんは幾つかの質問をして,聖くんが引いたトランプに書かれた数字を回答する.

光くん「書かれた数字の和を教えて」
聖くん「$31$ だよ」
光くん「うーん難しいな……なにかヒントくれない?」
聖くん「トランプに書かれた数字の積を求めたら、各位の和は $2$ になったよ」

光くんが引いたトランプの目として考えられるものを全て求めなさい。

解答形式

答えが1,2,4の場合は(1,2,4)と入力して下さい.(小さい順に)

500C

MARTH 自動ジャッジ 難易度:
15月前

15

$a_1+2a_2+3a_3=n$ を満たす非負整数の組 $(a_1,a_2,a_3)$ 全てについて,
$$\frac{(a_1+a_2+a_3)!}{a_1!\times a_2!\times a_3!}$$
の総和を $f(n)$ とします.
$f(n)\equiv 6 \pmod{12}$ を満たす最小の正整数 $n$ を求めてください.

300A

MARTH 自動ジャッジ 難易度:
20月前

23

正の実数の組 $(x_1,x_2,x_3,x_4,x_5)$ に対し, $a_1=b_1=1
$ および $n=1,2,3,4,5$ について以下を満たす実数の組の列 $(a_1,b_1),(a_2,b_2),\dots,(a_6,b_6)$ を考えます.
$$a_{n+1}=x_n a_n-n b_n,\quad b_{n+1}=x_n b_n$$
$b_6=100$ となるとき, $a_6$ として取りうる値には最大値が存在し, それを $M$ とします. $M$ の最小多項式 $P$ が存在するので, $P(500)$ を求めてください. ただし, $P$ の最高次の係数は $1$ とします.

400N

MARTH 自動ジャッジ 難易度:
4月前

10

$1$ 以上 $461$ 以下の整数からなる数列 $(a_1,a_2,\cdots,a_N)$ は以下を満たします.

  • $a_1=309,a_N=461$.
  • $a_n\neq 461\quad (n=2,3,\dots,N-1)$
  • $n=2,3,\dots,N$ について, $(a_1+a_{n-1})a_n \equiv (1+a_1a_{n-1})\pmod{461}$

このとき, $N$ の値は一意に定まるので, $N$ の値を求めてください.
ただし, $461$ は素数であり, $2^n\equiv 1\pmod{461}$ をみたす正整数 $n$ の最小値は, $460$ であり, $3a_1\equiv 5\pmod{461}$ です.

ちょっと前に生えたやつ

kinonon 自動ジャッジ 難易度:
4月前

20

問題文

$n=2\times 577$とする. このとき以下の値を素数$577$で割った余りを求めよ.
$$\sum _{k=0}^{n} {}_{n+k} \mathrm{C}_{n-k}\cdot {}_{2k} \mathrm{C}_{k}$$

解答形式

答えは正整数となるので、その値を解答してください

D

nmoon 自動ジャッジ 難易度:
4日前

37

問題文

$0$ 以上 $1$ 以下の実数 $a_{1} , a_{2} , a_{3}$ について,以下の値の最大値を求めてください.

$$a_{1} + 2a_{2} +3a_{3} +4\sqrt{a_{1}(1-a_{1}) + a_{2}(1-a_{2}) + a_{3}(1-a_{3})}$$

解答形式

求める値を $M$ としたとき,$10000M$ の整数部分を解答してください.

座王001(ボツ問題)

shoko_math 自動ジャッジ 難易度:
19月前

14

問題文

$\dfrac{1}{2},\dfrac{2}{3},\dfrac{3}{5},\dfrac{5}{8},\dfrac{8}{13},\dfrac{13}{21},\dfrac{21}{34},\dfrac{34}{55},\dfrac{55}{89}$ の中から( $2$ 個以上の)偶数個の異なる分数を選ぶ方法 $2^{8}-1$ 通りに対し,選んだ数の積を考えるとき,それらの総和は互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ の値を解答してください.

解答形式

半角数字で解答してください.

問題6

tomorunn 自動ジャッジ 難易度:
24日前

18

問題文

3以上の正整数 $n$に対し, $$ {}_nC_1, {}_nC_2, \dots, {}_nC_{n-1} $$の $n-1$個の数から $n-2$個を選んだときのそれらの最大公約数を $d$ とする.
全ての選び方について $d$ の総和を $d(n)$とする.100以下の$n$であって, $d(n)\le100$となる $n$の個数を求めよ。

解答形式

半角数字で入力してください。

WMC(C)

Weskdohn 採点者ジャッジ 難易度:
5月前

15

問題文

SKG学院の学園祭では,下のような$5$マス$\times5$マスの盤を用いて,次のようなゲームを行う.

・お客さんは,12個の碁石を全てマスの上に置く.
・一マスには一つまでしか碁石は置けない.
・この時スコアを次のように定める.
スコア:各行,各列について,碁石が偶数個置かれているものの個数.

スコアが10となるような,碁石の置き方の一例を答えよ.

解答形式

置かないマスは0,置くマスは1で表す.
例えば,一番右上,一番左上にのみ碁石を置く.この置き方は下のように書くものとする.

10001
00000
00000
00000
00000

またこの時,スコアは8である.

WMC(I)

Weskdohn 採点者ジャッジ 難易度:
5月前

19

問題文

今年でSKG学院の学園祭は第$66$回を迎えます.また今年度は $2025$ 年です.

さて、$0,2,5$ のみを用いた数式の内,答えが $66$ となるようなものを一つ求めてください.

但し,演算子($+, -, \times$ など)は自由に用いて良いものとします.

一例:

$\left( (2 \times 0 \times 2 \times 5!) + (2 \times 0 \times 2 \times 5!) \right) \times \left( 2^2 + 0^2 + 2^2 + 5^2 \right) = (1+1) \times 33 = 66$

解答形式

式と答えを省略無しで入力して下さい.また,上の例とは違うものをお願いします.

E

nmoon 自動ジャッジ 難易度:
4日前

20

問題文

横一列に並んだ $14$ 個のオセロの石があります.そして,以下の操作を何度か行い,黒面を向いた石の個数をできるだけ少なくします.

  • 連続して並んだ $4$ 個の石を選んで,左から $1,2,4$ 個目の石を全て裏返す.

全ての操作の終了後に黒面を向く石の個数を スコア とします.最初の石の配色は $2^{14}$ 通りありますが,これら全ての場合においてスコアの総和を求めてください.
 但し,オセロの石は,片方が黒面で,もう片方が白面であるとする.

解答形式

正整数で答えてください.