クラスの人数

AS 自動ジャッジ 難易度: 数学 > 中学数学
2025年4月14日21:23 正解数: 3 / 解答数: 5 (正答率: 60%) ギブアップ不可

全 5 件

回答日時 問題 解答者 結果
2025年4月17日9:51 クラスの人数 itami
正解
2025年4月15日18:39 クラスの人数 natsuneko
正解
2025年4月15日18:37 クラスの人数 natsuneko
不正解
2025年4月15日14:53 クラスの人数 ゲスト
正解
2025年4月15日2:05 クラスの人数 oolong_tea
不正解

おすすめ問題

この問題を解いた人はこんな問題も解いています


${}$ 西暦2025年問題第2弾です。第1弾に引き続き虫食算で、今回は掛け算にしてみました。数学的手法(約数や倍数、偶奇性や剰余、不等式による絞り込み、などなど)を適宜用いることで面倒な場合分けや仮置きを軽減できるよう仕込んでいるのは変わりません。パズル的に解くのもよし、数学的にゴリゴリ解くのもよし、どうぞお好きなようにお楽しみください!

解答形式

${}$ 解答は上2行を「被乗数×乗数」の形で入力してください。
(例) $2025 \times 102 = 206550$ → $\color{blue}{2025 \text{×} 102}$
 入力を一意に定めるための処置です。数字は半角で、「×」の演算記号はTeX記法(\times)でも、絵文字や環境依存文字でもなく、全角記号の「×」でお願いします。空白(スペース)も入れる必要はありません。

8角形の面積

AS 自動ジャッジ 難易度:
3日前

6

面積 $1$ の平行四辺形 $\mathrm{ABCD}$ に対し,辺 $\mathrm{AB},\mathrm{BC},\mathrm{CD},\mathrm{DA}$ の中点をそれぞれ $\mathrm K,\mathrm L,\mathrm M,\mathrm N$ とする.$8$ 直線 $\mathrm{AL},\mathrm{AM},\mathrm{BM},\mathrm{BN},\mathrm{CN},\mathrm{CK},\mathrm{DK},\mathrm{DL}$ によって囲まれてできる $8$ 角形の面積を求めよ.

ただし,整数でない有理数は既約分数(分母は自然数,分子は整数で,互いに素)で表し,$\displaystyle\frac{5}{13}$ なら
5/13
のように記入して答えよ.


${}$ 2025年、あけましておめでとうございます。昨年は図形問題の投稿を長らくお休みしてしまいましたが、本年もよろしくお願いいたします。
 さて、新年数日は西暦である2025を織り込んだ数学やパズルの問題をお送りします。
 初日・2日目は虫食算です。虫食算というと確定マスから埋めていき、時には場合分けや仮置きを利用するのが定番の手法ですが、僕が作る虫食算は数学的手法(約数や倍数、偶奇性や剰余、不等式による絞り込み、などなど)を適宜用いることで面倒な場合分けや仮置きを軽減できるようにしています。とはいえ、解き方は自由です。お好きなようにパズルなひと時をお楽しみください。

解答形式

${}$ 解答は2行目を「被除数÷除数」の形で入力してください。
(例) $2025 \div 101 = 20$ 余り $5$ → $\color{blue}{2025 \text{÷} 101}$
 入力を一意に定めるための処置です。数字は半角で、「÷」の演算記号はTeX記法(\div)でも、絵文字や環境依存文字でもなく、全角記号の「÷」でお願いします。空白(スペース)も入れる必要はありません。

2月前

17

問題文

$ $ 原点を $O$ とする $xy$ 平面において,(正とは限らない)整数 $n$ に対し座標 $(60, n)$ の点を $P_n$ と表します.$n$ を整数全体で動かしたとき,線分 $OP_n$ の長さとしてあり得る整数値の総和を求めて下さい.

解答形式

半角英数にし,答えとなる正整数値を入力し解答して下さい.

確率

kiriK 採点者ジャッジ 難易度:
5月前

3

三角形ABCがある。初めに頂点ABCいずれかの頂点にランダムに駒を1つ置き、
操作nを繰り返し行うことで駒を移動させる。

$操作n:$$ カードがそれぞれn,n+1,n+2枚入った箱ABCを用意する。$$それぞれの箱にあたりの
カードが3,4,2枚入っている。$$
頂点Aにいる時は、まず箱BかCをランダムに選び、$$選んだ箱からカードを1枚引く。$$箱Bであたりを引くと頂点Aにそのまま、$$箱Cであたりを引くと頂点Bに、$$どちらの箱においてもハズレを引くと頂点Cに移動する。$$頂点Bにいる時は、箱Aからカードを1枚引き、$$あたりをひくと頂点Aに、$$ハズレだと頂点Cに移動する。
$$頂点Cにいるときは何もしない。$

$操作3→操作4→操作5→・・・→操作kを行った時(3 \leq k)頂点Aに駒がいる確率を求めよ。$

自作問題7

iwashi 自動ジャッジ 難易度:
49日前

1

問題文

$m,m'\geq1,n\geq0$を満たす任意の整数$m,m',n$に対し$,\ $$A(m,n)$は
$$
A(1,n) = \frac{1}{n!},\qquad A(m+m',n) = \sum_{k=0}^{n}A(m,k)A(m',n-k)
$$を満たす。$1 \leq m \leq 100,0 \leq n \leq 100$を満たし$,\ $かつ$A(m,n)$が整数であるような整数$m,n$について$,\ $積$m\times n$の総和を求めよ。

11月前

5

問題文

下の図において, $\triangle ABC$ と $\triangle BDE$ は二等辺三角形です. さらに,
$$\angle ABC=\angle BDE=90^\circ,\hspace{1pc} \angle EBC=60^\circ\\
BC=32, \hspace{1pc} DB=6\sqrt{2}$$ が成立します. 線分 $AE$ の中点を $M$ とするとき, 線分 $DM$ の長さを求めてください.
ただし, $E$ は $\triangle ABC$ の内側にあります.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

三角形の存在確率

AS 自動ジャッジ 難易度:
8日前

1

サイコロを $3$ 回振って出た目を $a, b, c$ とする.このとき,$xy$ 平面上の $3$ 直線
$ax+2by+3c=0,\ 3bx+cy+2a=0,\ 2cx+3ay+b=0$
によって囲まれる三角形が存在する確率を求めよ.
答えは互いに素な自然数 $\eta,\zeta$ を用いて $\displaystyle\frac \eta\zeta$ と表されるので,$1$ 行目に $\eta$ を,$2$ 行目に $\zeta$ を答えよ.

角度の問題

iwasaki 自動ジャッジ 難易度:
10月前

3

三角形ABCとDEFにおいて
AB=DF,BC=DE,∠B=63°,∠C=30°,∠D=171°
であるとき,∠Eの角度を求めてください。

解答形式

非負整数を半角で入力してください。

自作3

soka 自動ジャッジ 難易度:
12月前

3

問題

$n=1,2,3...、k=0,1,2...n-1$とします。

また、不等式$$a_1<a_2<...<a_n≦n$$

を$A_0$とし、$A_0$の$n-1$個の$<$のうち$k$個が$≦$に置き換わったものの一つを$A_k$とします。

ここで、$A_k$をみたす正整数$(a_1,a_2...a_n)$の組の総数を$N_k$とするとき、$N_0+N_1+...+N_{n-1}$を$n$を用いて表してください。

解答形式

$C$(コンビネーション記号)を用いて、$aCb$の形で表すことができるので、$a,b$の間に半角スペースを入力して、$a$ $b$を半角英数字で入力してください。
追記:ただし、$b$は$2$つの値が考えられるので、小さい方を入力してください。
例)$nC2→n$ $2,2nCn→2n$ $n$

※初めの解答では指定がなく間違い判定になった方がいたので修正させていただきました、、

不等式

sdzzz 自動ジャッジ 難易度:
10月前

2

問題文

正の実数 $x,y,z$ が,
$$
(6x+15y+8z)xyz=5
$$
を満たす時, $(5x+5y+4z)^2$ の最小値を求めてください.

解答形式

半角数字で入力してください

No.05 連立方程式と不等式

Prime-Quest 自動ジャッジ 難易度:
14月前

3

問題

次の実数 $a,b,c$ に対し,つねに $|ax+by|\leqq |c|$ となる実数 $x,y$ の和の値域幅を求めよ.

  • $p,q$ の連立方程式 $ap+bq=c,\ (b-c)p+(c+a)q=a+7b$ は解を複数個もつ.

解答形式

半角数字で入力してください.