再掲No.1

MrKOTAKE 自動ジャッジ 難易度: 数学 > 競技数学
2025年5月13日13:40 正解数: 3 / 解答数: 3 (正答率: 100%) ギブアップ不可

問題文

三角形 $ABC$ があり内部に点 $D$ をとり,直線 $AD$ と $BC$ の交点を $E$ とすると $\angle ABD=\angle BCD,AD=DE=3,BE=2,CE=9$ であった.このとき $AC$ の長さの $2$ 乗を解答せよ.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

再掲No.2

MrKOTAKE 自動ジャッジ 難易度:
8月前

3

問題文

三角形 $ABC$ の線分 $BC$ の中点を $M$ とし,線分 $AB$ 上に点 $P$ をおくと $AP=2,AM=5,CP=4, \angle ACP= \angle BPM$ であったので,線分 $BC$ の長さの $2$ 乗を解答せよ.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

Humpty Point

MrKOTAKE 自動ジャッジ 難易度:
6月前

3

問題文

鋭角三角形 $ABC$ があり,$A,B$ から対辺におろした垂線の足をそれぞれ $D,E$ とし,線分 $DE$ 上に点 $P$ をとると,以下が成立しました.

$$AB=3,\quad AC=5,\quad \angle PAB=\angle PBC,\quad \angle PAC =\angle PCB $$
このとき線分 $AP$ の長さは互いに素な正の整数 $a,b$ を用いて $\displaystyle \frac{a}{b}$と表されるので $a+b$ を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください

KOTAKE杯001没問①

MrKOTAKE 自動ジャッジ 難易度:
17月前

4

問題文

三角形$ABC$の内心を$I$とし直線$AI$と三角形$ABC$の外接円の交点のうち$A$でないものを$M$, 直線$AM$と$BC$の交点を$D$,$A$から $BC$への垂線の足を$H$とすると$AD=4, BH=DM=2 $であった. このとき$CD$の長さは正の整数$a,b$を用いて$\sqrt{a} -b$と表せるので,$ a+b$を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯没問300G

MrKOTAKE 自動ジャッジ 難易度:
7月前

5

問題文

$AB=AC$ の鋭角二等辺三角形がありその垂心を $H$ とします.線分 $BC$ 上に点 $D$ をとり,点 $P,Q$ を $APQD$ がこの順に一直線上に並ぶようにとると $4$ 点$ACHP$,$4$ 点 $ABHQ$ はそれぞれ共円であり,
$$BD=15,\quad CD=25,\quad PQ=8$$
が成立しました.このとき, $AB$ の長さの $2$ 乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

300G

MrKOTAKE 自動ジャッジ 難易度:
18月前

5

問題文

三角形$ABC$があり,また点$C$を通る点$B$で$AB$に接する円$O$がある.円$O$上でありかつ
三角形$ABC$の内部に$BD=CD$となる点$D$をとり$AC$と円$O$の交点のうち$C$でないものを$E$とおくと
$AB=15,BC=10,DE=16$であった.このとき$AC$の長さの$2$乗は互いに素な正整数$a,b$によって$\frac{a}{b} $と表されるので$a+b$の値を解答してください.
ただし点$A,C,E$は$ACE$の順に一直線上に並んでいるものとする.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

Isosceles triangle

Uirou 自動ジャッジ 難易度:
16月前

3

問題文

$\triangle{ABC}$ は $AB=AC,∠{BAC}=40°$ を満たす。線分$BC$の中点$M$と$\triangle{ABC}$の内部の点$P$について、直線$AM$に関して直線$PM$を対称移動させた直線を$m$、$m$と直線$AP$の交点を$Q$とすると、$PB>PC,∠BPC=110°,∠AQM=15°$を満たしました。このとき、$∠PBC$の大きさを度数法で求めてください。ただし、答えは互いに素な正の整数$a,b$を用いて$(\dfrac{a}{b})°$と表されるので、$a+b$ を解答してください。

解答形式

例)半角数字で入力してください。

幾何作問練習2

lamenta 自動ジャッジ 難易度:
19月前

16

問題文

$AB=AC$なる鋭角二等辺三角形$ABC$において$AB$,$BC$の中点をそれぞれ$M$,$N$とし、$MC$の垂直二等分線と$AN$の交点を$P$とします。$\triangle ABC$の面積は$15$であり、$AP:PN=4:1$であるとき、$BC^4$を解答してください。

解答形式

半角数字で解答してください。

求値問題4

Kinmokusei 自動ジャッジ 難易度:
5年前

9

問題文

△ABCにおいて、垂心をH、外心をOとするとAB//HOであった。このとき、∠Cの角度としてあり得る値の範囲を求めてください。
ただし、OとHが一致する場合は除きます。

解答形式

∠Cの範囲は度数法で表すと、$(0°<)\alpha°<C<\beta°(<180°)$となります。
$\alpha+\beta$を半角数字で解答してください。

2年前

4

問題文

三角形 $ABC$ において,$A,B,C$ から対辺に下ろした垂線の足を $D,E,F$ とし,三角形 $ABC$ の垂心を $H$ としたところ,$DE=9,DF=8,DH=7$ となりました.
このとき,$AH$ の長さは互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表されるので,$a+b$ の値を解答してください.

解答形式

半角数字で解答してください.

求長問題20

Kinmokusei 自動ジャッジ 難易度:
4年前

4

問題文

半円と平行四辺形が図のように配置されています。赤い三角形の面積が3のとき、青い線分の長さを求めてください。

※平行四辺形の一辺と半円は接する。

解答形式

$$x=\fbox{ア}\sqrt{\fbox{イウ}-\fbox エ\sqrt{\fbox オ}}$$と表せるので、文字列 アイウエオ を解答してください。ただし、$\fbox ア~\fbox オ$には0以上9以下の整数が入ります。

方程式

katsuo.tenple 自動ジャッジ 難易度:
17月前

7

問題文

方程式x⁶−6x⁵+15x⁴−47x³+15x²−6x+1=0の実数解を求めて下さい。

解答形式

正の整数a.b.cを用いて$\frac{b±√c}{a}$の形で表せられるので、a+b+cの値を半角で解答して下さい。

2年前

5

問題文

円に内接する $8$ 角形 $ABCDEFGH$ が $\angle{A}=121^{\circ},\angle{B}=122^{\circ},\angle{C}=123^{\circ},\angle{D}=124^{\circ},\angle{E}=125^{\circ},\angle{F}=126^{\circ}$ を満たすとき,$\angle{G}$ の大きさを度数法で解答してください.

解答形式

半角数字で解答してください.