次の式の値は互いに素な正の整数 $p,q$ を用いて $\displaystyle \frac{q}{p}$ と表せるので,$p+q$ の値を解答してください. $$\displaystyle \sum_{n=1}^{10} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{(n-1)!(i+j)!(2n-i-j)!}{i!j!(2n)!(n-i)!(n-j)!}$$
半角数字で解答してください.
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
注:この問題は全完防止用問題です。この問題を解くには高度な知識が必要かもしれません。
Aの箱には白い玉が $1500$ 個 黒い玉が $500$ 個入っている。 Bの箱には白い玉が $1000$ 個 黒い玉が $1000$ 個入っている。 Cの箱には白い玉が $800$ 個 黒い玉が $1200$ 個入っている。 次のような操作を順に行う。 (1) Aの箱からランダムにボールを一つ取り出す。 (2) Bの箱からランダムにボールを一つ取り出す。 (3) Cの箱からランダムにボールを一つ取り出す。 (4) A,B,Cそれぞれの箱に残っている黒い玉の個数を $a,b,c$ とした時、$a>b$ または $b>c$ が成立した場合は操作をここで終了する。 (5) 箱に玉が一つも残っていない場合は操作をここで終了する。 (6) 操作が終了しなかった場合 (1) に戻る(取り出したボールは箱には戻さない) 操作が終了した時、箱に玉が一つも残っていない確率を求めてください。
答えは互いに素な正整数 $a,b$ を用いて $\frac{a}{b}$ と表せるので $a+b$ を解答してください。
表面積が$\displaystyle n \sin \frac{2\pi}{n}$である正$n$角錐の体積の最大値を$V_n$とする。極限値 $$\begin{eqnarray} A &=& \lim_{n \to \infty} V_n \\ B &=& \lim_{n \to \infty} n^2 (V_n -A ) \end{eqnarray}$$を求めよ。
$A,B$は $$ A = \fboxア \frac{\pi^\fboxイ}{\fboxウ} , \qquad B = \fboxエ \frac{\fboxオ \pi^\fboxカ}{\fboxキ} $$となるので文字列「$\fboxア\fboxイ\fboxウ\fboxエ\fboxオ\fboxカ\fboxキ$」をすべて半角で1行目に答えてください。ただし$\fboxア\fboxエ$は$\texttt{+-}$のどちらか、$\fboxイ\fboxウ\fboxオ\fboxカ\fboxキ$は自然数であり、$\fboxオ$と$\fboxキ$は互いに素です。例えば$\displaystyle A=+\frac{\pi^{2}}{3},B=-\frac{5\pi^{7}}{11}$としたいときは+23-5711と回答してください。計算して-5688とはしないでください。
数列 ${a_n}$ ($n \ge 0$) が、初期値 $a_0 = 3$ および以下の漸化式で定義されるとする。 $$a_{n+1} = a_n^2 - 2 \quad (n \ge 0)$$ この数列の一般項 $a_n$ を求めよ。 ただし、黄金比を$Φ$とする。
例)ひらがなで入力してください。
間違えて公開してしまい、回答を一件いただいているので、泣く泣くボツ問としてここに供養します。
$\min(f(x))$を関数$f(x)$の$-\frac{\pi}{2}\leq x\leq\frac{\pi}{2}$における最小値とする。 以下の値を求めよ。 $$\int^{16}_0\min(\tan^2{x}+a\cos{x})da$$ ただし$a$と$x$は独立している。
非常に細長いガムテープがあります。このガムテープは $M$ 個の区画に分かれています。ここで、$M$ は非常に大きい整数です。
はじめ、ガムテープには何も描かれていません。じーえむ君は $M$ 回以下の操作を行い、絵を描きます。
操作が終わった後黒く塗られている区画の数を $X$ とします。 $M$ が限りなく大きくなるときの $\frac{X}{M}$ の期待値の極限を求めてください。
答えとなる値を $p$ として $10^{10}p$ の整数部分を求めてください。 なお、以下の定数表を参考にしても構いません。 https://ja.wikipedia.org/wiki/%E6%95%B0%E5%AD%A6%E5%AE%9A%E6%95%B0
$p$を$3$より大きい素数とする $S=\sum_{k=1}^{p-2} k \cdot (k!) \cdot ((p-k-1)!)$ を$p$で割った余りを求めよ。
解答は既約分数で表せるので、 1行目に分子、 2行目に分母 を半角で書いてください 分母は1になる場合も書いてください
設問8
正の数からなる数列 ${a_n}$ が $a_1 > 0$ および漸化式 $a_{n+1} = a_n + \frac{1}{a_n^2}$ ($n \ge 1$) を満たすとき、極限値 $\lim_{n \to \infty} \frac{a_n}{\sqrt[3]{3n}}$ を求めよ。
じーえむ君は $n×n$ の盤面のマス目に $2\times 2$ の正方形タイルを重ならないように出来るだけ多く入れたいです。 ただし、盤面はトーラスになっています。上から $x$ 行目 左から $y$ 列目のマスを $(x,y)$ と表すとき、左上のマスが $(x,y)$ であるようなタイルは $(x,y),(x+1( mod \ n),y),(x,y+1( mod \ n)),(x+1( mod \ n),y+1( mod \ n))$ の $4$ マスを占有します。 じーえむ君が入れることが出来るタイルの数の最大値を $N$ とする時、じーえむ君がタイルを $N$ 個入れる方法は何通りありますか? ただし、回転や平行移動などで一致する入れ方は区別して数えてください。
上記の問題は $n$ が $4$ で割って $1$ 余る数である時上手く解くことが出来ます。 $n= 333,1001,7777$ のそれぞれについて上記の問題を解いてその答えの総和を解答してください。
非負整数で解答してください。
下図において,黒線の図形は正十五角形であり,青線の長さは $8$ ,緑線の長さは $6\sqrt{5} - 2 + 2\sqrt{6}\sqrt{5 - \sqrt{5}}$ です. このとき,赤線の長さは,正整数 $a,b,c,d,e,f,g$ (ただし,$c,d,e,g$ は平方因子を持たない)を用いて $a - b\sqrt{c} + (\sqrt{d} + \sqrt{e})\sqrt{f-\sqrt{g}}$ と表せるので,積 $abcdefg$ の値を解答してください.
余分な空白や改行を入れずに,半角数字のみを用いて解答してください.
下図は、2つの正方形と円を組み合わせた図形です。点(●)は小さい正方形の辺を4等分する点で、円は大きい正方形に内接しています。大きい正方形の面積が60㎠のとき、小さい正方形の面積は何㎠ですか。
半角数字で入力してください。 例)10
ある町 $A$ がある. 町 $A$ にはいくつかの家と$,$それらを双方向に結ぶいくつかの道路からなる. さらに$,$ 以下の条件を満たす.
・家は $2025$ 個からなり$,$ $1$$,$ $2$$,$ ⋯$,$ $2025$の番号がつけられている. ・道路は $2024$ 本ある. ・どの家からどの家へまでもいくつかの道路を通って移動可能である.
また$,$ 家 $i$ の 便利さ を以下のように定義します. ( $i$ の番号が付けられている家を家 $i$ と呼びます. ) $$ i \times (家iからちょうど1本の道路を通って移動可能な家の数) $$
さらに$,$ 町 $A$ の スコア を$,$ すべての家の 便利さ の総和と定義します.
道路の結ばれ方としてありうるものすべてについて$,$ 町 $A$ の スコア の総和の正の約数の個数を求めてください.
スコア の総和の正の約数の個数を求め$,$ 1行に半角で解答してください. 必要であれば電卓や素数表を用いてください.
以下によって定義される整数 $N$ を素数 $13907$ で割った余りを求めてください.$$N=\prod_{k=1}^{13906} (k^2+2025)$$
13906以下の非負整数で解答してください