3辺の長さがすべて整数である直角三角形を考える。その斜辺を$a$、直角を挟む2辺を$b, c$とする。
これらの辺の長さが、以下の関係式を満たしているという。 $$7a = 5(b+c)$$ この条件を満たす全ての直角三角形のうち、斜辺 $a$ が$10$の倍数であり、かつ $a < 200$ であるもの全てを考える。
それらの三角形の、面積の総和を求めよ。
半角でスペースなし
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
4x4のマス目のうち1つを、更に4x4に分割します。いくつかのマスで長方形を作るとき、何種類の長方形を作れますか。? 但し、同型でも場所が異なるなら違う種類と見なします。
半角数字で入力してください。
4x4のマスのうち1個以上に、対角線を1本ずつ引いたとき、全ての対角線がループの一部分であるものは何通りですか? 但し、「ループの一部分である」とは、 全ての対角線の端が、ちょうど1つの別の対角線の端と同位置にあることを意味します。
3次の多項式 $P(x)$ は整数係数を持ち、すべての係数が整数であるとする。 0 でないある整数 $M$ について、$P(x)$ は以下の条件を満たす。 $kP(k) = M (k=1, 2, 3, 4)$ このとき、M が取りうる最小の正の整数値を求めよ。
実数から実数への関数$f$であって任意の実数$x$、$y$について$$f(x)+f(f(y)+x)=f(f(x))+4y$$ が成り立つようなものを全て求めよ。
簡単でいいので証明もお願いします。
整数辺の直角三角形の中で、ある特別な性質を持つものを「閉じた三角形」と呼ぶ。 その定義は次の通りである: 三角形の3つの頂点から、最も近い内接円の接点までの3つの線分を考える。その3つの線分の長さを3辺として、新たな非退化三角形を作ることができる。 この条件を満たすもののうち、斜辺が300未満であるもの全てを考え、それらの周長の総和を求めよ。
例)ひらがなで入力してください。
整数辺を持つ直角三角形のうち、その斜辺を a、内接円の半径を r としたとき、等式 $a^2 - 4ar - 4r^2 = r$ を満たすものを考える。 そのような三角形すべてのうち、内接円の半径 r が 1000 未満であるもの全ての、面積の総和を求めよ。
半角スペースなし
1行目に分子 2行目に分母を書いてください 半角で、根号が含まれる場合 √(17) √(41+5√(19)) 2√(15)+3√(17) このように括弧を付けてください また、指数が小さい順、同じ次数のものは小さい数のものから並べてください 例:√10+√15+1 ³√15+√17+9
1から2pの2p個の異なる自然数を全て並べる時に隣り合う二つの積が常に偶数になる通りをSpとするとき、それがpで最大何回割れるか答えろ. (ただしpは素数とする)
(半角の自然数が答え)
垂心を$H$とする鋭角三角形$ABC$があり、$AB=9,AC=11,CH=7$を満たしています。 $△AHC$の外接円を$Γ$とし、直線$BH$と$Γ$の交点のうち$H$でない点を$D$として、線分$CD$の中点を$M$とします。
線分$HM$と線分$AC$の交点を$E$としたときの、$DE$の長さの$2$乗を求めてください。
求める値は互いに素な整数$a,b$を用いて$\dfrac{a}{b}$と表されるので、$a+b$を解答してください。
$(0,0),(4,0),(0,4),(4,4)$を頂点とする正方形を、頂点が全て格子点上にある三角形4つに分割する方法はいくつありますか。 回転や裏返しをして同じ形になるものも区別するものとします。
4x4のマス目のうち、0個以上のマスを選んで1つずつ地雷を置き、すべてのマスに周囲8マス(自身を含まない)の地雷の数を書きます。 地雷を置くすべてのパターンにおいて書かれている数字の総和を求めてください。
$AB<AC$ で,線分 $AB,AC$ の長さが正整数値である三角形 $ABC$ について,半直線 $CB$ 上で線分 $BC$ 上でないところに点 $D$ ,半直線 $BC$ 上で線分 $BC$ 上でないところに点 $E$ をそれぞれ置く.また,三角形 $ADE$ の外接円と直線 $AB,AC$ との交点のうち,$A$ でないほうをそれぞれ $P,Q$ とする.$4$ 点 $B,P,Q,C$ が同一円周上にあり,$DB=9,BC=45,CE=5$ のとき,線分 $PQ$ の長さとしてあり得る値の総和は互いに素な正整数 $a,b$ を用いて $\displaystyle\frac{a}{b}$ と表せるので,$a+b$ を解答してください.