第1問

sulippa 採点者ジャッジ 難易度: 数学
2025年6月6日21:00 正解数: 1 / 解答数: 2 (正答率: 50%) ギブアップ不可
この問題はコンテスト「三角形の内接円」の問題です。

問題文

3辺の長さがすべて整数である直角三角形を考える。その斜辺を$a$、直角を挟む2辺を$b, c$とする。

これらの辺の長さが、以下の関係式を満たしているという。
$$7a = 5(b+c)$$
この条件を満たす全ての直角三角形のうち、斜辺 $a$ が$10$の倍数であり、かつ $a < 200$ であるもの全てを考える。

それらの三角形の、面積の総和を求めよ。

解答形式

半角でスペースなし


スポンサーリンク

解答提出

この問題は出題者ジャッジの問題です。 出題者が解答を確認してから採点を行います。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

E. 更に分割

G414xy 自動ジャッジ 難易度:
8月前

8

問題文

4x4のマス目のうち1つを、更に4x4に分割します。いくつかのマスで長方形を作るとき、何種類の長方形を作れますか。?
但し、同型でも場所が異なるなら違う種類と見なします。

解答形式

半角数字で入力してください。

D. ループ

G414xy 自動ジャッジ 難易度:
8月前

75

問題文

4x4のマスのうち1個以上に、対角線を1本ずつ引いたとき、全ての対角線がループの一部分であるものは何通りですか?
但し、「ループの一部分である」とは、
全ての対角線の端が、ちょうど1つの別の対角線の端と同位置にあることを意味します。

解答形式

半角数字で入力してください。

組み合わせ

suth 自動ジャッジ 難易度:
8日前

4

1から2pの2p個の異なる自然数を全て並べる時に隣り合う二つの積が常に偶数になる通りをSpとするとき、それがpで最大何回割れるか答えろ.
(ただしpは素数とする)

(半角の自然数が答え)

第4問

sulippa 採点者ジャッジ 難易度:
23時間前

3

問題文

整数辺の直角三角形の中で、ある特別な性質を持つものを「閉じた三角形」と呼ぶ。
その定義は次の通りである:
三角形の3つの頂点から、最も近い内接円の接点までの3つの線分を考える。その3つの線分の長さを3辺として、新たな非退化三角形を作ることができる。
この条件を満たすもののうち、斜辺が300未満であるもの全てを考え、それらの周長の総和を求めよ。

解答形式

例)ひらがなで入力してください。

第2問

sulippa 採点者ジャッジ 難易度:
23時間前

1

問題文

整数辺を持つ直角三角形のうち、その斜辺を a、内接円の半径を r としたとき、等式
$a^2 - 4ar - 4r^2 = r$
を満たすものを考える。
そのような三角形すべてのうち、内接円の半径 r が 1000 未満であるもの全ての、面積の総和を求めよ。

解答形式

半角スペースなし

第1問

sulippa 自動ジャッジ 難易度:
7日前

2

問題文

3次の多項式 $P(x)$ は整数係数を持ち、すべての係数が整数であるとする。
0 でないある整数 $M$ について、$P(x)$ は以下の条件を満たす。
$kP(k) = M (k=1, 2, 3, 4)$
このとき、M が取りうる最小の正の整数値を求めよ。

解答形式

半角でスペースなし

重心内心の距離

sulippa 自動ジャッジ 難易度:
14日前

5

問題

三角形の重心を G、内心を I、内接円の半径を $r$ 、外接円の半径を$R$とする。もし $GI=r$ が成り立つとき、この条件を満たす非退化な三角形が存在するための、$R/r$ の最小値を求めよ。

解答形式

1行目に分子
2行目に分母を書いてください
半角で、根号が含まれる場合
√(17) √(41+5√(19)) 2√(15)+3√(17)
このように括弧を付けてください
また、指数が小さい順、同じ次数のものは小さい数のものから並べてください
例:√10+√15+1 ³√15+√17+9

F. 4分割

G414xy 自動ジャッジ 難易度:
8月前

57

問題文

$(0,0),(4,0),(0,4),(4,4)$を頂点とする正方形を、頂点が全て格子点上にある三角形4つに分割する方法はいくつありますか。
回転や裏返しをして同じ形になるものも区別するものとします。

解答形式

半角数字で入力してください。

3月前

13

問題文

垂心を$H$とする鋭角三角形$ABC$があり、$AB=9,AC=11,CH=7$を満たしています。
$△AHC$の外接円を$Γ$とし、直線$BH$と$Γ$の交点のうち$H$でない点を$D$として、線分$CD$の中点を$M$とします。

線分$HM$と線分$AC$の交点を$E$としたときの、$DE$の長さの$2$乗を求めてください。

解答形式

求める値は互いに素な整数$a,b$を用いて$\dfrac{a}{b}$と表されるので、$a+b$を解答してください。

JMO2025yo-6?

simasima 自動ジャッジ 難易度:
3月前

7

問題文

正の実数からなる $2$ つの数列 $a_1,a_2,...$ と $b_1,b_2,...$ があり, 任意の整数 $n$ について以下を満たしている.
$$
(a_{n+1},b_{n+1})=\left(\frac{a_n}{2},b_n+\frac{a_n}{2}\right)または(a_{n+1},b_{n+1})=\left(a_n+\frac{b_n}{2},\frac{b_n}{2}\right)が成立する.
$$
$(a_1,b_1)$ が $(7,11)$ であるとき, $a_{100}$ としてあり得る値の中で $2025$ 番目に小さいものを求めよ.

解答形式

答えの値を $x$ としたとき, $2^{100}x$ の値を解答してください.
参考:$2^{100}=1267650600228229401496703205376$

D

Furina 自動ジャッジ 難易度:
7月前

3

問題文

$AB=2,AC=1$ をみたす三角形 $ABC$ の垂心を $H$,内心を $I$,外接円を $\Gamma$ とします.直線 $AH$ と $BI$ の交点を $D$ とし,$A$ における $\Gamma$ の接線と直線 $CD$ の交点を $X$ とすると,$AX=BX$ となりました.このとき,辺 $BC$ の長さを求めてください.ただし,求める値は,互いに素な正整数 $a,c$ と平方因子をもたない正整数 $b$ を用いて $\dfrac{a+\sqrt{b}}{c}$ と表されるので,$a\times b\times c$ を解答してください.

解答形式

半角数字で入力してください。

自作3

tomorunn 自動ジャッジ 難易度:
8日前

4

問題文

モニターに0が表示されている。ここには3つのボタンがあり、
・ボタン$A$を押すとモニターの数字が1増える。
・ボタン$B$を押すとモニターの数字が2増える。
・ボタン$C$を押すとモニターの数字が3増える。
ボタン$A~C$をそれぞれ任意の回数押したとき、
最後に表示される数字が300以下の非負の3の倍数となるようなボタンの押し方の総数を求めよ。ただし、ボタンを押す順番は区別しない。

解答形式

例)半角数字で入力してください。