指数・対数といろいろ

hi-yo 自動ジャッジ 難易度: 数学 > 高校数学
2025年6月28日9:17 正解数: 0 / 解答数: 2 ギブアップ数: 0

全 2 件

回答日時 問題 解答者 結果
2025年9月8日15:24 指数・対数といろいろ Sry
不正解
2025年6月28日13:24 指数・対数といろいろ Ichijo
不正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

基礎チェック(整数)

ona 採点者ジャッジ 難易度:
2月前

2

問題文

a^3+b^3=(ab)^2を満たす自然数a,bの組を全て求めよ

解答形式

例)
記述式 簡単でいいです

指数・対数といろいろ

hi-yo 自動ジャッジ 難易度:
3月前

1

$$
-|-log_\sqrt{a}{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{a}^{32}}}}}}|
$$

7進法の循環小数

AS 自動ジャッジ 難易度:
5月前

3

$n$ を自然数として $\displaystyle\frac1n$ と表される数全体の集合を $A$ とする.また,$A$ の要素のうち,$7$ 進法で小数展開したとき,小数点以下が基本周期 $3$ の数字の列で表される循環小数となるもの全体の集合を $B$ とする.
このとき,$B$ の要素の総和を求めよ.答えは互いに素な自然数 $a, b$ により $\displaystyle\frac ab$ と表されるので,$1$ 行目に $a$,$2$ 行目に $b$ を答えよ.

連立条件下の変数和の値

yaguwa 自動ジャッジ 難易度:
24日前

3

問題

実数$x,y$が
$$
\begin{cases}
x^2+y^2=1\\
2x^3+2y^3=1
\end{cases}
$$
を満たしているとき,$x+y$ のとりうる値をすべて求めよ.

解答形式

解答に$sinθ,cosθ$を含む場合は,$cosθ(0<θ<π)$に統一し,記入例にしたがって全て$半角$で解答してください.なお,度数法で解答すると不正解となるので,弧度法を用いてください.
小数などを用いた近似値での解答は不正解となります.
複数の解答がある場合は小さい値から順に上から改行してください.

記入例
3cos(5π/6)
3cos(π/3)

Conkom1910615 ジャッジなし 難易度:
2月前

2

問題文

ある数は2の倍数であり、1を引くと3の倍数である。この数を、小さい順で10個答えよ

解答形式

数字を10個

整数問題

sulippa 採点者ジャッジ 難易度:
4月前

6

問題文

素数 $p$ と正の整数 $n$ が、以下の等式を満たすとします。
$$\frac{n^2+np+p^2}{n+p} = 2p-1$$
このような組 $(n,p)$ を全て求めてください。

解答形式

解が有限個であるとされた場合は、全ての解と、それ以外に解が存在しないことの証明を、簡単で構わないのでお願いします。無限個とされた場合は証明いらないので、何らかの形で解を表してください。証明に完全性がないと見なした場合は、採点機能がない都合上、99点をあげたいところも不正解とさせていただきます

指数・対数といろいろ

hi-yo 自動ジャッジ 難易度:
3月前

5

$$
\sqrt{log_\frac{1}{3}(\frac{1}{273})}の整数部分?
$$

連立方程式だよ

udonoisi 自動ジャッジ 難易度:
3月前

6

問題文

$11$ 個の実数 $A_0 , A_1 , \cdots , A_{10} $ が $n=0 , 1 , \cdots , 9$ に対して$$\sum_{k=0}^{10}{A_kk^n}=0$$を満たします. $A_0=1$ のとき, $\sum_{k=0}^{10}{A_kk^{10}}$ の値を求めてください.
ただし, $0^0=1$とします.

解答形式

非負整数を答えてください.

sEigEn sign

piroshiki 自動ジャッジ 難易度:
36日前

13

問題文

$\lim\limits_{n\to\infty} n\sin\frac{2π}{n} = mπ$ である。
$m$の値を求めよ。

解答形式

$m$は2つの実数$a,b$を使って $\frac{a}{b}$と表せる。
$m$を分母が有理化された既約分数の形にした時の$a+b$を解答すること。

素因数分解だよ

udonoisi 自動ジャッジ 難易度:
51日前

10

問題文

$56076923$ の素因数の総和を求めてください.
ただし, 重複する素因数は異なるものとして考えます.

解答形式

例)非負整数を答えてください.

変遷(ごめんなさい)

udonoisi 自動ジャッジ 難易度:
31日前

13

問題文

$\alpha^5-1=0$ を満たす複素数 $\alpha$ に対して関数 $f$ を $f(x)=\alpha x+1$ で定義したとき,
$f^{100}(1)$ としてありうる値の総和をすべて求めてください. ただし,$f^{100}(x)$ は $f$ を $100$ 回合成した関数とします.

解答形式

例)非負整数を答えてください.

追記

ごめんなさい解答形式を書いてなかったです

✕✕

sulippa 自動ジャッジ 難易度:
4月前

12

✕✕