正整数値に対して定義され正整数値をとる関数 $f(x)$ は,任意の正整数 $a, b, c$ において,以下を満たしました. $$ f(a)+f(b)+f(c)=f(abc)+2 $$また,$f(15)=15$ を満たすとき,$f(2025)$ としてあり得る値の総和を求めてください.
半角数字で解答してください.
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
$1$ 以上 $5$ 以下の整数しか項に持たない全 $2025$ 項の数列があり,任意の連続する $3$ 項において以下を満たします.
例えば,$1, 1, 1, 1, \ldots$ や $1, 3, 5, 4, \ldots$ は条件を満たします.このような数列は $N$ 個あります.$N$ を素数 $677$ で割った余りを求めてください.
設問9
数列 ${a_n}$ ($a_n \in {0,1,2,3,4}$) が $a_1=1, a_2=1$ および漸化式 $a_{n+2} \equiv a_{n+1} + a_n \pmod{5}$ ($n \ge 1$) を満たすとする。$a_{2025}$ の値を求めよ。
例)ひらがなで入力してください。
$a_{1},a_{2}, \cdots , a_{1500}$ は $1$ 以上 $3$ 以下の整数からなる数列であり,$a_{1501}=a_{1} =1,a_{1502}=a_{2}$ と定義すると全ての $1500$ 以下の正整数 $k$ で $a_{k+1} \neq a_{k}$ が成り立ち,かつ $1500$ 以下の正整数 $i$ のうち,
・$(a_{i},a_{i+1})=(1,3)$ となるものがちょうど $132$ 個 ・$(a_{i},a_{i+1})=(2,1)$ となるものがちょうど $213$ 個 ・$(a_{i},a_{i+1})=(3,2)$ となるものがちょうど $321$ 個 ・$(a_{i},a_{i+1},a_{i+2})=(1,2,3)$ となるものがちょうど $123$ 個
ずつ存在します.この数列としてありうるものの数が $3$ で割れる最大の回数を求めてください.(電卓の使用を推奨します.)
正整数列 $A_{n}$ を以下のように定義する $$ 1個の2 以上の正整数を要素に持ち,それらの総積が n に等しい $$ この時 $A_{2^{100}}$ としてありうる数列すべてについて,その要素の 総和を $97$ で割った余りを答えてください。 ただし,並び替えて一致するものも別々として数える。 例えば $A_{8}$ としてありうるものは $\lbrace8\rbrace,\lbrace2,4\rbrace, \lbrace4,2\rbrace, \lbrace2,2,2\rbrace$ でありその要素の総和は $8+2+4+4+2+2+2+2=26$ である。
正整数で答えてください
自然数列$\ a_n$を以下のようにして定める. $$a_{n+1}=\lceil \sqrt{n} \rceil a_n+\lfloor \sqrt{n} \rfloor$$ ただし,$\ \lceil x \rceil \in \mathbb{N},\ x \le \lceil x \rceil <x+1\ ,\ \lfloor x \rfloor \in \mathbb{N},\ x-1 < \lfloor x \rfloor \le x$ です. このとき,$\ a_{2026}\ $が$\ 5$ で割り切れる最大の回数を求めてください.
整数で解答してください.
次の式を満たす相異なる正の整数$p,q$を全て求めよ。
$$p^{p+q}−q^{p+q}=(pq)^p−(pq)^q$$
$p+q$の値をそれぞれの組で求め総和した値を半角で入力してください。
$1$ 以上 $8$ 以下の数が $8$ 個あります.$8\times 8$ の白いマス目に,$8$ 個の数を棒グラフとして黒で書き込むことにしました.このとき,このマスから $2\times 2$ の正方形を切り取りとる方法のうち,黒マスがちょうど $2$ マスである方法の数を最初の $8$ 個の数のスコアと呼ぶことにします.$8$ 個の数の選び方 $8^{8}$ 通り全てに対してのスコアの総和を答えてください.
末尾に「(通り)」などをつけず,非負整数で答えてください.
$実数全体で定義され、実数値を取る定数でない関数f(x)がある。$ $この関数が任意の実数x,yについて恒等式$ $$f(x^2+y)=f(kx^2+2y)-f(3x^2)$$ $を満たすとき、定数kの値を求めよ。$
$\angle{ADC}=\angle{BCD}=90^\circ,BAD>90^\circ$なる台形$ABCD$について, $$\angle{BAC}=90^\circ,AB=4,AC=3$$ が成立した.$ABCD$の面積を求めよ.
求める値は互いに素な正整数$p,q$を用いて$\frac{p}{q}$と表せるので,$p+q$を解答してください.
(10進法で)正の整数を書き、各桁の数字を赤か青に塗ったものを色付き整数と定義する。 例えば、57という数字を色付き整数で表すと、5,7をそれぞれ赤、青に塗るかのそれぞれ2通りあるので4通りの表し方がある。 次の条件を満たす色付き整数の個数を求めよ。 ・各桁の数の総和が10である。 ・どの桁にも0は使われていない。
半角整数で入力してください。
$11$ 個の実数 $A_0 , A_1 , \cdots , A_{10} $ が $n=0 , 1 , \cdots , 9$ に対して$$\sum_{k=0}^{10}{A_kk^n}=0$$を満たします. $A_0=1$ のとき, $\sum_{k=0}^{10}{A_kk^{10}}$ の値を求めてください. ただし, $0^0=1$とします.
非負整数を答えてください.
$4999$ 以下の素数の組 $(p,q,r,s)$ が以下の式を満たしているとき,積 $pqrs$ が取りうる値の総和を解答してください. $$ pqr+pqs-p^2 = q^2+2 $$
正の整数を半角で解答.