p2

lamenta 自動ジャッジ 難易度: 数学 > 競技数学
2025年8月22日21:00 正解数: 6 / 解答数: 10 (正答率: 60%) ギブアップ数: 0
この問題はコンテスト「LGC short」の問題です。

全 10 件

回答日時 問題 解答者 結果
2025年8月24日19:19 p2 34tar0
正解
2025年8月22日22:23 p2 kou0707
不正解
2025年8月22日22:21 p2 YoneSauce
正解
2025年8月22日22:20 p2 kou0707
不正解
2025年8月22日22:14 p2 YoneSauce
不正解
2025年8月22日21:59 p2 natsuneko
正解
2025年8月22日21:15 p2 MrKOTAKE
正解
2025年8月22日21:11 p2 miq_39
正解
2025年8月22日21:10 p2 miq_39
不正解
2025年8月22日21:10 p2 pomodor_ap
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

p1

lamenta 自動ジャッジ 難易度:
4日前

23

問題文

$\quad$ $BC=8$ なる三角形 $ABC$ において,内接円の半径は $2$ ,角 $A$ 内の傍接円の半径は $5$ であった.このとき,三角形 $ABC$ の面積を求めよ.

解答形式

求める値は互いに素な正の整数 $a,b$ を用いて $\dfrac ab$と表せるので, $a+b$ を半角数字で解答してください.

初投稿

lamenta 自動ジャッジ 難易度:
14月前

11

問題文

$1$つの整数が書かれた$15$枚のタイルが横$1$列に敷き詰められています。以下の条件を満たす数字の書き方は何通りあるか答えてください。

・タイルには$36$の正の約数のうちいずれかが書かれている。
・任意の隣り合う$2$枚のタイルに書かれた数の積は平方数でない。
・任意の隣り合う$3$枚のタイルに書かれた数の積は平方数である。

解答形式

半角数字で答えてください。

OMC不採用問題1

sta_kun 自動ジャッジ 難易度:
14月前

9

問題文

凸四角形 $ABCD$ において,
$$AB=BD=7 ,BC=5,CD=4, 2∠ACB+∠ACD=180°$$

が成り立ちました.このとき,線分 $AD$ の長さは互いに素な自然数 $a,b$ を用いて $\dfrac{a}{b}$​ と表せるので $a+b$ を解答してください.

解答形式

半角数字で解答してください.
不備等あれば教えて下さい。

自作問題No.1

Tehom 自動ジャッジ 難易度:
15月前

8

問題文

凸四角形$ABCD$は$\angle{BAC}$$=$$12^\circ$$,$$\angle {CAD}$$=$$30^\circ$$,$$\angle{ACD}$$=$$24^\circ$$,$$AB=CD$を満たします.このとき、$\angle{ADB}$の値は互いに素な正整数$a,b$を用いて$\dfrac{a}{b}$度となるので、積$ab$の値を求めてください.

解答形式

半角数字で解答してください.

PDC008.5 (G)

pomodor_ap 自動ジャッジ 難易度:
22日前

9

問題文

鋭角三角形 $ABC$ について線分 $AC$ 上に点 $P$ を取り,線分 $PC$ の垂直二等分線と線分
$BC$ が交わったのでその点を $D$ とする.線分 $AB$ 上の点 $E$ が $ED\parallel AC$ を満たしている.三角形 $PED$ の外接円と線分 $BC$ が $D$ でない点 $F$ で交わっており,$$FA=FC=7, BD=4, PD=5$$ が成り立った.このとき,線分 $AC$ の長さは互いに素な正の整数 $a, b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ を解答せよ.

p3

lamenta 自動ジャッジ 難易度:
4日前

3

問題文

$\quad$鋭角三角形 $ABC$ において, $B$ を通り直線 $AC$ に平行な直線上に点 $P$ を, $C$ を通り直線 $AB$ に平行な直線上に点 $Q$ をそれぞれとると, $A,P,Q$ はすべて直線 $BC$ に関して同じ方にあり, $\angle APB=\angle AQC$ が成立した.また,三角形 $PAB$ の外接円と三角形 $QAC$ の外接円が再び交わる点を $X$ とし,直線 $PQ$ と直線 $BX,CX$ の交点をそれぞれ $R,S$ とすると,
$$\cos\angle BXC=\frac 15,CX-BX=5,XR:XS=5:3$$が成立した.さらに,線分 $BC$ の中点を $M$ ,直線 $AX$ と三角形 $PXQ$ の外接円が再び交わる点を $T$ とし,三角形 $TPQ$ の内心を $I$ とすると,直線 $AX$ と直線 $MI$ は平行であった.このとき,線分 $XI$ の長さを求めよ.

解答形式

求める値の二乗は互いに素な正の整数 $a,b$ を用いて $\dfrac ab$と表せるので, $a+b$ を半角数字で解答してください.

300G

eq_K 自動ジャッジ 難易度:
14月前

7

問題文

$4$ 点 $A,B,C,D$ は同一円周上にあり,その内部(辺上を含まない)に点 $P$ をとります.
また,線分 $AP,BP,CP,DP$ の垂直二等分線をそれぞれ $a,b,c,d$ とします.
$a,b$ の交点を $E$,$b,c$ の交点を $F$,$c,d$ の交点を $G$,$d,a$ の交点を $H$ とすると,$4$ 点 $E,F,G,H$ は同一円周上にあり,四角形 $EFGH$ の二本の対角線は $P$ で交わりました.
 そして,以下が成立しました:
$$HP=5,\quad HE=11,\quad EF=16$$
 このとき,$HG$ の長さの二乗は互いに素な正整数 $a,b$ を用いて $\dfrac{b}{a}$ と表せるので,$a+b$ を解答してください.

解答形式

非負整数を半角で入力してください.

bMC_F

bzuL 自動ジャッジ 難易度:
13月前

19

問題文

ある三角形の内心を中心とする半径 $2024$ の円が,その三角形の頂点のうちの一つと,その三角形の外心,垂心を通りました.この三角形の外接円の半径としてあり得る値の総和の整数部分を求めてください.

解答形式

半角数字で解答してください.

不採用幾何

sdzzz 自動ジャッジ 難易度:
13月前

10

問題文

三角形 $ABC$ があり,外心を $O$ とした時以下が成り立ちました.
$$
AB+AC=2BC,\quad AB\times AC=24,\quad AO=5
$$
この時,三角形 $ABC$ の内接円の半径の値を求めてください.ただし求める値は互いに素な正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ の値を解答してください.

解答形式

半角数字で入力してください.

400G

poino 自動ジャッジ 難易度:
14月前

9

問題文

$AB=13,BC=14,CA=15$ を満たす三角形 $ABC$ において、外心を $O$、辺 $AB$ の中点を $M$、辺 $AC$ の中点を $N$、$A$ から辺 $BC$ に下ろした垂線の足を $D$ とします。また、円 $DMN$ と $AD$ の交点を $X$、$MN$ について $X$ と対称な点を $Y$ とします。このとき四角形 $BCOY$ の面積を求めてください。

解答形式

半角数字で入力してください。

OMC没問2

Kta 自動ジャッジ 難易度:
5月前

3

問題文

$\angle{A}=60^\circ,AB<AC$ なる三角形 $ABC$ について,その外心を $O$ ,垂心を $H$ とします.直線 $OH$ と直線 $AB$ との交点を $P$ としたとき,以下が成立しました.$$AP=8,AH=7$$このとき,三角形 $ABC$ の面積は互いに素な正整数 $a,c$ および平方因子を持たない正整数 $b$ を用いて $\displaystyle\frac{a\sqrt{b}}{c}$ と表せるので,$a+b+c$ を解答してください.

解答形式

半角数字で入力してください。

何か

lamenta 自動ジャッジ 難易度:
14月前

4

問題文

縦$2$マス、横$7$マスの$14$マスそれぞれに$1$〜$7$の整数のいずれかが$1$つ書かれています。以下の条件を満たす数字の書き方は何通りあるか答えてください。ただし、$N_{a,b}$で上から$a$マス目、左から$b$マス目のマスに書かれた数を表します。

・$1≦i≦7$の任意の整数$i$において、
 $N_{1,i}≡N_{2,i} (mod\:3)$ かつ
 $N_{1,i}≢N_{2,i} (mod\:2)$
・$1≦j≦2$、$1≦k≦6$の任意の整数$j,k$において、
 $N_{j,k}≢N_{j,k+1} (mod\:3)$ かつ
 $N_{j,k}≢N_{j,k+1} (mod\:2)$

解答形式

半角数字で入力してください。