以下で定義される関数 $f$ について, $f(15000,25000)$ を素数 $4999$ で割った余りを求めてください. $$f(m,n)=\sum_{\ell=1}^{n}\sum_{\substack{a_1,\cdots,a_{\ell}\geq 1\\\\ a_1+\cdots +a_{\ell}=n}}(-1)^{\ell}\binom{m}{a_1}\cdots \binom{m}{a_{\ell}}$$ $$\quad$$
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
各頂点の重みが $1$ または $2$ である根付き $2$ 分木で、各頂点の重みの総和が $n$ になるもののうち重みが $2$ である頂点の数が偶数個であるものの個数を $X_n$ ,奇数個であるものの個数を $Y_n$ とするとき $X_{100}-Y_{100}$ を求めてください。 ただし, 各頂点について右の辺の子と左の辺の子は区別するものとします.
正整数の組 $(a_1,a_2,a_3,a_4,a_5,a_6)$ であって, 以下を共に満たすものはいくつありますか?
$i=1,2,3,4,5,6$ について $a_i$ は $210^{11}$ の約数.
$i=1,2,3,4,5$ について $\dfrac{a_{i+1}}{a_i}$ は整数であり, $\dfrac{a_{i+1}}{a_i}$ が $210^k$ の倍数となるような最大の整数 $k$ は奇数.
$2025$ 以下の正整数 $n$ であって, $$\displaystyle\sum_{j=0}^{n}\displaystyle\sum_{i=j}^{2n-j} {}_{2n-j}C_{i}$$ が $6$ の倍数となるものの総和を求めよ.
半角数字で入力してください。
区別できる6個の箱に区別できる球を12個入れる(球が1つも入っていない箱があってもよい). $i$ 番目の箱に入っている玉の数を $A_i$ とする. 入れ方すべてについて,積 $A_1^2 A_2^2\cdots A_6^2$ を計算し,その和を求めよ.
$1$ 以上 $461$ 以下の整数からなる数列 $(a_1,a_2,\cdots,a_N)$ は以下を満たします.
このとき, $N$ の値は一意に定まるので, $N$ の値を求めてください. ただし, $461$ は素数であり, $2^n\equiv 1\pmod{461}$ をみたす正整数 $n$ の最小値は, $460$ であり, $3a_1\equiv 5\pmod{461}$ です.
holoXのずのーである『博衣こより』はとある実験に成功し、同じholoXのメンバーである『ラプラス・ダークネス』『鷹嶺ルイ』『沙花叉クロヱ』『風真いろは』と自分自身をそれぞれ $6$ 人ずつに分身させてしまいました. 分身させた計 $30$ 人のうち $6$ 人を選び,下記の条件に沿って左右 $1$ 列に並べる方法は何通りありますか.
半角整数で入力してください.
以下の条件に従って数列 ${a_n}$ を定義するとき,$\displaystyle \sum_{n=1}^{2025} a_n$ の取りうる値の総和を求めよ. ・すべての正整数 $n$ に対し,$a_n$ は $0$ 以上の整数である. ・すべての正整数 $n$ に対し,$a_{2^n}=a_2^n$ を満たす. ・すべての正整数 $n$ に対し,$\displaystyle \sum_{k=1}^{n} a_k = \sum_{k=n+1}^{2n} a_k$ を満たす.
$n=2\times 577$とする. このとき以下の値を素数$577$で割った余りを求めよ. $$\sum _{k=0}^{n} {}_{n+k} \mathrm{C}_{n-k}\cdot {}_{2k} \mathrm{C}_{k}$$
答えは正整数となるので、その値を解答してください
$N=9000^2\times 9001$ とし, 以下の条件を満たす整数の組の列 $(x_0,y_0,z_0), (x_1,y_1,z_1) ,\dots,(x_{N},y_{N},z_{N})$ を良い列 と呼びます.
このとき良い列について $(x_i,y_i,z_i)=(x_{i-1},y_{i-1},z_{i-1})$ を満たす $i\;(i=1,2,\dots,N)$ の個数を $k$ としたとき $2^k$ をその列の 良さ とします. 良い列すべてについてその良さの総和を $S$ とします. このとき $S$ を素数 $8999$ で割った余りを求めてください.
十万,一万,千,百,十,一の位がそれぞれ $a,b,c,d,e,f$ であるような $6$ 桁の整数を $A$ とし,十万,一万,千,百,十,一の位がそれぞれ $e,f,a,b,c,d$ であるような $6$ 桁の整数を $B$ とします. 相異なる $1$ 桁の整数 $a,b,c,d,e,f$ が $e>a>0$ を満たしながら動くとき,$A$ と $B$ の最大公約数の最大値を求めてください.
半角数字で解答してください.
3以上の正整数 $n$に対し, $$ {}_nC_1, {}_nC_2, \dots, {}_nC_{n-1} $$の $n-1$個の数から $n-2$個を選んだときのそれらの最大公約数を $d$ とする. 全ての選び方について $d$ の総和を $d(n)$とする.100以下の$n$であって, $d(n)\le100$となる $n$の個数を求めよ。
正の整数 $m$ に対し, $$f(m)=\sum_{k=0}^m(k+1)k2^k\frac{(2m-k-1)!}{(m-k)!}$$ と置きます.このとき, $f(5000)$ を素数 $5003$ で割った余りを求めてください.