500A

MARTH 自動ジャッジ 難易度: 数学 > 競技数学
2025年10月3日12:07 正解数: 1 / 解答数: 4 (正答率: 25%) ギブアップ数: 1

以下で定義される関数 $f$ について, $f(15000,25000)$ を素数 $4999$ で割った余りを求めてください.
$$f(m,n)=\sum_{\ell=1}^{n}\sum_{\substack{a_1,\cdots,a_{\ell}\geq 1\\\\ a_1+\cdots +a_{\ell}=n}}(-1)^{\ell}\binom{m}{a_1}\cdots \binom{m}{a_{\ell}}$$
$$\quad$$


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

400C

MARTH 自動ジャッジ 難易度:
36日前

6

各頂点の重みが $1$ または $2$ である根付き $2$ 分木で、各頂点の重みの総和が $n$ になるもののうち重みが $2$ である頂点の数が偶数個であるものの個数を $X_n$ ,奇数個であるものの個数を $Y_n$ とするとき $X_{100}-Y_{100}$ を求めてください。
 ただし, 各頂点について右の辺と左の辺は区別するものとします.

700A

MARTH 自動ジャッジ 難易度:
12日前

5

以下で定義される関数 $f(n)$ について, $f(1000)$ を互いに素な正整数 $a,b$ を用いて, $\dfrac{a}{b}$ と表したとき, $ab$ が$2$ で割り切れる最大の回数を求めてください.

$$
f(n)=\sum_{m=1}^{n}\frac{(m+1)m^2n^{n-m-1}}{(n-m)!}
$$

700A

MARTH 自動ジャッジ 難易度:
12日前

3

以下の整数 $2$ つの組からなる関数 $f(n,m)$ について, $f(30000,20000)$ を素数 $4999$ で割った余りを求めてください.

  • $n,m$ のいずれかが $0$ 未満であるとき, $f(n,m)=0$.
  • $f(0,0)=f(0,1)=f(1,0)=1$.
  • $(n,m)\not \in\{(0,0),(0,1),(1,0)\}$ であるとき, 以下が成立.
    $$f(n,m)+f(n-2,m)+f(n,m-2)=2f(n-1,m)+2f(n,m-1)+2f(n-1,m-1)$$.

700C

MARTH 自動ジャッジ 難易度:
12月前

8

正整数の組 $(a_1,a_2,a_3,a_4,a_5,a_6)$ であって, 以下を共に満たすものはいくつありますか?

  • $i=1,2,3,4,5,6$ について $a_i$ は $210^{11}$ の約数.

  • $i=1,2,3,4,5$ について $\dfrac{a_{i+1}}{a_i}$ は整数であり, $\dfrac{a_{i+1}}{a_i}$ が $210^k$ の倍数となるような最大の整数 $k$ は奇数.

400A

MARTH 自動ジャッジ 難易度:
13日前

4

以下で定義される関数 $f(n)$ について, $f(1000)$ を互いに素な正整数 $a,b$ を用いて, $\dfrac{a}{b}$ と表したとき, $ab$ が$2$ で割り切れる最大の回数を求めてください.

$$
f(n)=\sum_{m=1}^{n}\frac{mn^{n-m-1}}{(n-m)!}
$$

問題3

tomorunn 自動ジャッジ 難易度:
44日前

10

問題文

$2025$ 以下の正整数 $n$ であって,
$$\displaystyle\sum_{j=0}^{n}\displaystyle\sum_{i=j}^{2n-j} {}_{2n-j}C_{i}$$
が $6$ の倍数となるものの総和を求めよ.

解答形式

半角数字で入力してください。

400N

MARTH 自動ジャッジ 難易度:
5月前

10

$1$ 以上 $461$ 以下の整数からなる数列 $(a_1,a_2,\cdots,a_N)$ は以下を満たします.

  • $a_1=309,a_N=461$.
  • $a_n\neq 461\quad (n=2,3,\dots,N-1)$
  • $n=2,3,\dots,N$ について, $(a_1+a_{n-1})a_n \equiv (1+a_1a_{n-1})\pmod{461}$

このとき, $N$ の値は一意に定まるので, $N$ の値を求めてください.
ただし, $461$ は素数であり, $2^n\equiv 1\pmod{461}$ をみたす正整数 $n$ の最小値は, $460$ であり, $3a_1\equiv 5\pmod{461}$ です.

問題5

tomorunn 自動ジャッジ 難易度:
44日前

8

問題文

区別できる6個の箱に区別できる球を12個入れる(球が1つも入っていない箱があってもよい).
$i$ 番目の箱に入っている玉の数を $A_i$ とする.
入れ方すべてについて,積 $A_1^2 A_2^2\cdots A_6^2$ を計算し,その和を求めよ.

解答形式

半角数字で入力してください。

E

kusu394 自動ジャッジ 難易度:
11月前

29

問題文

holoXのずのーである『博衣こより』はとある実験に成功し、同じholoXのメンバーである『ラプラス・ダークネス』『鷹嶺ルイ』『沙花叉クロヱ』『風真いろは』と自分自身をそれぞれ $6$ 人ずつに分身させてしまいました.
分身させた計 $30$ 人のうち $6$ 人を選び,下記の条件に沿って左右 $1$ 列に並べる方法は何通りありますか.

  • 『博衣こより』と『沙花叉クロヱ』は隣り合ってはならない.(こよクロ(『博衣こより』と『沙花叉クロヱ』のユニット)は解散しているため)
  • 『ラプラス・ダークネス』の左右のどちらか隣に『鷹嶺ルイ』がいないといけない(『ラプラス・ダークネス』は『鷹嶺ルイ』が近くにいないと不安になってしまうため.しかし,『鷹嶺ルイ』の隣に『ラプラス・ダークネス』がいなくても良い.)

解答形式

半角整数で入力してください.

問題4

tomorunn 自動ジャッジ 難易度:
44日前

13

問題文

以下の条件に従って数列 ${a_n}$ を定義するとき,$\displaystyle \sum_{n=1}^{2025} a_n$ の取りうる値の総和を求めよ.
・すべての正整数 $n$ に対し,$a_n$ は $0$ 以上の整数である.
・すべての正整数 $n$ に対し,$a_{2^n}=a_2^n$ を満たす.
・すべての正整数 $n$ に対し,$\displaystyle \sum_{k=1}^{n} a_k = \sum_{k=n+1}^{2n} a_k$ を満たす.

解答形式

半角数字で入力してください。

ちょっと前に生えたやつ

kinonon 自動ジャッジ 難易度:
5月前

20

問題文

$n=2\times 577$とする. このとき以下の値を素数$577$で割った余りを求めよ.
$$\sum _{k=0}^{n} {}_{n+k} \mathrm{C}_{n-k}\cdot {}_{2k} \mathrm{C}_{k}$$

解答形式

答えは正整数となるので、その値を解答してください

600A

MARTH 自動ジャッジ 難易度:
6月前

25

$N=9000^2\times 9001$ とし, 以下の条件を満たす整数の組の列 $(x_0,y_0,z_0), (x_1,y_1,z_1) ,\dots,(x_{N},y_{N},z_{N})$ を良い列 と呼びます.

  • $(x_0,y_0,z_0)=(x_{N},y_{N},z_{N})=(0,0,0)$.
  • $n=1,2,\dots,N$ について, $(x_n-x_{n-1},y_n-y_{n-1},z_n-z_{n-1})$ は $(1,-1,0)$ の $6$ 通りの並べ替えまたは $(0,0,0)$ のいずれかに等しい.

このとき良い列について $(x_i,y_i,z_i)=(x_{i-1},y_{i-1},z_{i-1})$ を満たす $i\;(i=1,2,\dots,N)$ の個数を $k$ としたとき $2^k$ をその列の 良さ とします. 良い列すべてについてその良さの総和を $S$ とします. このとき $S$ を素数 $8999$ で割った余りを求めてください.