500A

MARTH 自動ジャッジ 難易度: 数学 > 競技数学
2025年10月3日12:07 正解数: 1 / 解答数: 4 (正答率: 25%) ギブアップ数: 1

全 4 件

回答日時 問題 解答者 結果
2025年10月7日22:26 500A SOW
不正解
2025年10月7日22:17 500A SOW
不正解
2025年10月7日21:58 500A SOW
不正解
2025年10月4日21:32 500A ZIRU
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

400C

MARTH 自動ジャッジ 難易度:
4月前

6

各頂点の重みが $1$ または $2$ である根付き $2$ 分木で、各頂点の重みの総和が $n$ になるもののうち重みが $2$ である頂点の数が偶数個であるものの個数を $X_n$ ,奇数個であるものの個数を $Y_n$ とするとき $X_{100}-Y_{100}$ を求めてください。
 ただし, 各頂点について右の辺と左の辺は区別するものとします.

RMC005 敗者復活戦P3

MARTH 自動ジャッジ 難易度:
37日前

2

以下の値を素数 $97$ で割った余りを求めてください.
$$\sum_{k=200}^{300}(-4)^{300-k}{}_{2k}\mathrm{C}_{k}\cdot {}_{k}\mathrm{C}_{300-k}\cdot {}_{2k-300}\mathrm{C}_{k-200}$$

700A

MARTH 自動ジャッジ 難易度:
3月前

3

以下の整数 $2$ つの組からなる関数 $f(n,m)$ について, $f(30000,20000)$ を素数 $4999$ で割った余りを求めてください.

  • $n,m$ のいずれかが $0$ 未満であるとき, $f(n,m)=0$.
  • $f(0,0)=f(0,1)=f(1,0)=1$.
  • $(n,m)\not \in\{(0,0),(0,1),(1,0)\}$ であるとき, 以下が成立.
    $$f(n,m)+f(n-2,m)+f(n,m-2)=2f(n-1,m)+2f(n,m-1)+2f(n-1,m-1)$$.

700A

MARTH 自動ジャッジ 難易度:
29日前

5

関数 $f:\mathbb{Z}^2\rightarrow \mathbb{Z}$ は以下を満たします.

  • $f(0,0)=1$
  • $n,m$ いずれかが $0$ 未満であるとき, $f(n,m)=0$.
  • $(n,m)\neq(0,0)$ を満たす非負整数の組 $(n,m)$ に対して, 以下が成立.

$$
\begin{aligned}
&f(n,m)\\\\
&=f(n-1,m)+2f(n,m-1)\\\\
&+f(n-2,m)-f(n-1,m-1)-f(n,m-2)
\end{aligned}
$$
このとき$f(10000,10000)$ を 素数 $4999$ で割った余りを求めてください.

700A

MARTH 自動ジャッジ 難易度:
3月前

8

以下で定義される関数 $f(n)$ について, $f(1000)$ を互いに素な正整数 $a,b$ を用いて, $\dfrac{a}{b}$ と表したとき, $ab$ が$2$ で割り切れる最大の回数を求めてください.

$$
f(n)=\sum_{m=1}^{n}\frac{(m+1)m^2n^{n-m-1}}{(n-m)!}
$$

問題5

tomorunn 自動ジャッジ 難易度:
4月前

8

問題文

区別できる6個の箱に区別できる球を12個入れる(球が1つも入っていない箱があってもよい).
$i$ 番目の箱に入っている玉の数を $A_i$ とする.
入れ方すべてについて,積 $A_1^2 A_2^2\cdots A_6^2$ を計算し,その和を求めよ.

解答形式

半角数字で入力してください。

400A

MARTH 自動ジャッジ 難易度:
3月前

6

以下で定義される関数 $f(n)$ について, $f(1000)$ を互いに素な正整数 $a,b$ を用いて, $\dfrac{a}{b}$ と表したとき, $ab$ が$2$ で割り切れる最大の回数を求めてください.

$$
f(n)=\sum_{m=1}^{n}\frac{mn^{n-m-1}}{(n-m)!}
$$

700C

MARTH 自動ジャッジ 難易度:
15月前

10

正整数の組 $(a_1,a_2,a_3,a_4,a_5,a_6)$ であって, 以下を共に満たすものはいくつありますか?

  • $i=1,2,3,4,5,6$ について $a_i$ は $210^{11}$ の約数.

  • $i=1,2,3,4,5$ について $\dfrac{a_{i+1}}{a_i}$ は整数であり, $\dfrac{a_{i+1}}{a_i}$ が $210^k$ の倍数となるような最大の整数 $k$ は奇数.

問題3

tomorunn 自動ジャッジ 難易度:
4月前

10

問題文

$2025$ 以下の正整数 $n$ であって,
$$\displaystyle\sum_{j=0}^{n}\displaystyle\sum_{i=j}^{2n-j} {}_{2n-j}C_{i}$$
が $6$ の倍数となるものの総和を求めよ.

解答形式

半角数字で入力してください。

400N

MARTH 自動ジャッジ 難易度:
8月前

10

$1$ 以上 $461$ 以下の整数からなる数列 $(a_1,a_2,\cdots,a_N)$ は以下を満たします.

  • $a_1=309,a_N=461$.
  • $a_n\neq 461\quad (n=2,3,\dots,N-1)$
  • $n=2,3,\dots,N$ について, $(a_1+a_{n-1})a_n \equiv (1+a_1a_{n-1})\pmod{461}$

このとき, $N$ の値は一意に定まるので, $N$ の値を求めてください.
ただし, $461$ は素数であり, $2^n\equiv 1\pmod{461}$ をみたす正整数 $n$ の最小値は, $460$ であり, $3a_1\equiv 5\pmod{461}$ です.

E

kusu394 自動ジャッジ 難易度:
14月前

29

問題文

holoXのずのーである『博衣こより』はとある実験に成功し、同じholoXのメンバーである『ラプラス・ダークネス』『鷹嶺ルイ』『沙花叉クロヱ』『風真いろは』と自分自身をそれぞれ $6$ 人ずつに分身させてしまいました.
分身させた計 $30$ 人のうち $6$ 人を選び,下記の条件に沿って左右 $1$ 列に並べる方法は何通りありますか.

  • 『博衣こより』と『沙花叉クロヱ』は隣り合ってはならない.(こよクロ(『博衣こより』と『沙花叉クロヱ』のユニット)は解散しているため)
  • 『ラプラス・ダークネス』の左右のどちらか隣に『鷹嶺ルイ』がいないといけない(『ラプラス・ダークネス』は『鷹嶺ルイ』が近くにいないと不安になってしまうため.しかし,『鷹嶺ルイ』の隣に『ラプラス・ダークネス』がいなくても良い.)

解答形式

半角整数で入力してください.

ちょっと前に生えたやつ

kinonon 自動ジャッジ 難易度:
8月前

21

問題文

$n=2\times 577$とする. このとき以下の値を素数$577$で割った余りを求めよ.
$$\sum _{k=0}^{n} {}_{n+k} \mathrm{C}_{n-k}\cdot {}_{2k} \mathrm{C}_{k}$$

解答形式

答えは正整数となるので、その値を解答してください