整数問題

smasher 自動ジャッジ 難易度: 数学
2025年11月4日15:00 正解数: 6 / 解答数: 6 (正答率: 100%) ギブアップ不可

問題文

$p,q$を素数とする。
$pq(p+q)$が平方数となるものをすべて求めよ。

解答形式

ありうる組$(p,q)$について$pq$の総和を半角数字で入力してください。


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

直線の総数

smasher 自動ジャッジ 難易度:
35日前

3

問題文

平面に重複なく$2N$個の点を打ち、任意の点を$2$個ずつ選んで$N$本の直線を作る。
ある打った$2N$個の点に対して、どの直線も交わらないような結び方の総数を$S(N)$とする。$S(N)$が取りうる$2025$以下の正整数値をすべて求めよ。
ただし、$N$は正整数とする。

解答形式

$S(N)$が取りうる値の総和を半角数字で入力してください。


問題文

次の連立方程式において、x,yの値を求めよ
ただし、x>yとする
4x²+4x-4y²=-1
x²+6x+6y=61

解答形式

すべて半角でx=◯,y=◯と入力
分数は分子/分母と入力
例 x=1,y=-1/3

不等式

skimer 採点者ジャッジ 難易度:
6月前

3

問題文

$a>0,b>0$ のとき、
$a^{4}+4a^{3}b+2a^{2}b^{2}+4ab^{3}+b^{4}\geq0$ を示せ

解答形式

記述形式でお願いします
入力がめんどくさい方は、紙に書いて、twitterのDMに送ってください

相加・相乗?①

smasher 自動ジャッジ 難易度:
55日前

12

問題文

$x$を実数とする。
$$x^2+1-\frac{1}{x^2+1}$$
の最小値を求めよ。

解答形式

最小値の値を半角数字で入力してください。

TMC001(H)

OooPi 自動ジャッジ 難易度:
59日前

11

問題文

正整数列 $A_{n}$ を以下のように定義する
$$
1個の2 以上の正整数を要素に持ち,それらの総積が n に等しい
$$  この時 $A_{2^{100}}$ としてありうる数列すべてについて,その要素の
総和を $97$ で割った余りを答えてください。
  ただし,並び替えて一致するものも別々として数える。
例えば $A_{8}$ としてありうるものは $\lbrace8\rbrace,\lbrace2,4\rbrace, \lbrace4,2\rbrace, \lbrace2,2,2\rbrace$ でありその要素の総和は $8+2+4+4+2+2+2+2=26$ である。

解答形式

正整数で答えてください

整数問題

smasher 自動ジャッジ 難易度:
2月前

5

問題文

$x,y$を整数、$p$を素数とする。
$x^2-xy+y^2=2^p$を満たす組$(x,y,p)$をすべて求めよ。

解答形式

$x+y+p$の値としてありうる値の総和を半角数字で入力してください。

8月前

5

問題文

四角形$ABCD$があり、次の条件を満たします。

$∠A=∠B=∠C, ∠D=135°, BC=4\sqrt{6}, CD=8$

この四角形の面積$S$は$a + \sqrt{b}$の形で表されるので、$a + b$を解答してください。

解答形式

半角数字で答えをそのまま入力。

余談

問題に不備等あればtwitterのDMなどで気軽にお願いします。
Tex初めて使いました。
問題思いつくのは簡単なんですけど、解説は未だに上手く書けませんね…

幾何No.3

alpha 自動ジャッジ 難易度:
6日前

6

問題

$AB=3$なる鋭角三角形$ABC$について, $AC$, $BC$の中点をそれぞれ$M$, $N$とすると, $AN=4$が成立した. また, 三角形$ANC$の外接円と直線$MN$との交点のうち, $N$でないほうを$D$とすると, $DC=9$が成立した. このとき, $AD$の長さの二乗は互いに素な正整数$a$, $b$を用いて$\frac{a}{b}$と表されるので$a+b$を解答せよ.

素因数分解

smasher 自動ジャッジ 難易度:
29日前

6

問題文

$P=122333444455555666666777777788888888999999999 $とする。
$P$を素因数分解せよ。

解答形式

$P$の素因数の総積を半角数字で入力してください。
ただし、この問題は難しい計算をする必要がないことが保証されます。

幾何No.2

alpha 自動ジャッジ 難易度:
6日前

4

問題

$AB=AC$なる二等辺三角形$ABC$について, $A$から$BC$に下した垂線の足を$H$とし, 線分$AH$上に点$P$をとると,
$$
AP=5 PH=3 ∠PBC=∠PAC
$$
が成立した. このとき, 三角形$ABP$の面積の2乗を解答せよ.

角度問題

rbskado0789 自動ジャッジ 難易度:
30日前

14

問題文

円Oの直径BCを斜辺とし、円周上に点Aを取った三角形ABCと、線分AOを少し延長したところに点Dを取った三角形BCDがある。そこに、∠Aから辺BDに垂直な線分を書き、その交点を点Fとした。EO=DO,∠OCD=25°のとき、∠BAFは何度ですか。

解答形式

例)〇〇°

幾何No.1

alpha 自動ジャッジ 難易度:
3月前

11

問題

鋭角三角形$ABC$について, 外心を$O$, 垂心を$H$とする. $B$から$AC$に下した垂線の足を$D$とすると,
$$
AD=3 OH=OD BH:HC=7:18
$$
が成立した. このとき, 線分$BD$の長さの$2$乗は互いに素な正整数$a$,$b$を用いて$\frac{a}{b}$と表されるので, $a+b$を解答せよ.