$p,q$を素数とする。 $pq(p+q)$が平方数となるものをすべて求めよ。
ありうる組$(p,q)$について$pq$の総和を半角数字で入力してください。
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
次の連立方程式において、x,yの値を求めよ ただし、x>yとする 4x²+4x-4y²=-1 x²+6x+6y=61
すべて半角でx=◯,y=◯と入力 分数は分子/分母と入力 例 x=1,y=-1/3
$a>0,b>0$ のとき、 $a^{4}+4a^{3}b+2a^{2}b^{2}+4ab^{3}+b^{4}\geq0$ を示せ
記述形式でお願いします 入力がめんどくさい方は、紙に書いて、twitterのDMに送ってください
平面に重複なく$2N$個の点を打ち、任意の点を$2$個ずつ選んで$N$本の直線を作る。 ある打った$2N$個の点に対して、どの直線も交わらないような結び方の総数を$S(N)$とする。$S(N)$が取りうる$2025$以下の正整数値をすべて求めよ。 ただし、$N$は正整数とする。
$S(N)$が取りうる値の総和を半角数字で入力してください。
$x$を実数とする。 $$x^2+1-\frac{1}{x^2+1}$$ の最小値を求めよ。
最小値の値を半角数字で入力してください。
以下の $x$ に関する $100$ 次方程式の(重解を含む)$100$ 個の複素数解を $\alpha_1,\alpha_2,...,\alpha_{100}$ とします. $$x^{100}+x^{99}+2025x+12=0$$
このとき,以下の値を求めてください. $$\sum_{k=1}^{100} ({\alpha_k}^{100}+{\alpha_k}^{99})$$
整数で解答してください.
https://x.com/atwr0711/status/2000173940698927172?s=20 こちらの14番の問題と同じです.
$x,y$を整数、$p$を素数とする。 $x^2-xy+y^2=2^p$を満たす組$(x,y,p)$をすべて求めよ。
$x+y+p$の値としてありうる値の総和を半角数字で入力してください。
以下の $x$ に関する $3$ 次方程式は相異なる $3$ 個の複素数解をもつので,それぞれの解を $\alpha,\beta,\gamma$ とします. $$x^3-2^{2025}x^2+24x-2^{2023}=0$$
このとき,以下の値は整数になるので,その正の約数の個数を求めてください. $$(\alpha+\beta)(\beta+\gamma)(\gamma+\alpha)$$
https://x.com/atwr0711/status/2000173940698927172?s=20 こちらの31番の問題と同じです.
四角形$ABCD$があり、次の条件を満たします。
$∠A=∠B=∠C, ∠D=135°, BC=4\sqrt{6}, CD=8$
この四角形の面積$S$は$a + \sqrt{b}$の形で表されるので、$a + b$を解答してください。
半角数字で答えをそのまま入力。
問題に不備等あればtwitterのDMなどで気軽にお願いします。 Tex初めて使いました。 問題思いつくのは簡単なんですけど、解説は未だに上手く書けませんね…
$n$ を自然数とする。 $n^5+n+1$ が互いに異なる $4$ つの素数の積で表されるような $n$ のうち最小のものを答えよ。
x,y,zを自然数とする。 xy+xz = x+y+z となるような(x,y,z)の組はいくつあるか。
数字のみを記入すること。例:3組ある場合は 3
正整数列 $A_{n}$ を以下のように定義する $$ 1個の2 以上の正整数を要素に持ち,それらの総積が n に等しい $$ この時 $A_{2^{100}}$ としてありうる数列すべてについて,その要素の 総和を $97$ で割った余りを答えてください。 ただし,並び替えて一致するものも別々として数える。 例えば $A_{8}$ としてありうるものは $\lbrace8\rbrace,\lbrace2,4\rbrace, \lbrace4,2\rbrace, \lbrace2,2,2\rbrace$ でありその要素の総和は $8+2+4+4+2+2+2+2=26$ である。
正整数で答えてください
$AB=3$なる鋭角三角形$ABC$について, $AC$, $BC$の中点をそれぞれ$M$, $N$とすると, $AN=4$が成立した. また, 三角形$ANC$の外接円と直線$MN$との交点のうち, $N$でないほうを$D$とすると, $DC=9$が成立した. このとき, $AD$の長さの二乗は互いに素な正整数$a$, $b$を用いて$\frac{a}{b}$と表されるので$a+b$を解答せよ.