ある演算子⭐︎を次のように定めます。 $$ a⭐︎b=ab+a+b $$ このとき、$x$についての方程式$x⭐︎(x+2)=-1$を解きなさい。
「$x=$」の形から始めなさい。
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
$P=122333444455555666666777777788888888999999999 $とする。 $P$を素因数分解せよ。
$P$の素因数の総積を半角数字で入力してください。 ただし、この問題は難しい計算をする必要がないことが保証されます。
以下の $x$ に関する $100$ 次方程式の(重解を含む)$100$ 個の複素数解を $\alpha_1,\alpha_2,...,\alpha_{100}$ とします. $$x^{100}+x^{99}+2025x+12=0$$
このとき,以下の値を求めてください. $$\sum_{k=1}^{100} {\alpha_k}^{100}$$
整数で解答してください.
https://x.com/atwr0711/status/2000173940698927172?s=20 こちらの14番の問題の改題です.
0,1,2,……,8 の数字から一つずつ選んでa,b,c,d,e,f,gに代入するという操作を考える。 数字の重複を許さないとき、十進表記された7桁の数abcdefgが3の倍数となる確率を求めよ。 ただし、a=0の場合も認めます。
互いに素な正整数q,pを用いて p/q と表せるため、p+qを解答してください。
0,1,2,……,8 の数字から一つずつ選んでa,b,c,d,e,f,gに代入するという操作を考える。 数字の重複を許すとき、十進表記された7桁の数abcdefgが3の倍数となる確率を求めよ。 ただし、a=0の場合も認めます。 (似た問題を投稿しています。解答する場所を間違えないように注意してください。)
互いに素な正整数p,qを用いてp/qと表せるため p+qを解答してください。
$AD$ と $BC$ が平行であるような等脚台形 $ABCD$ において,$AB, BC, CD, DA$ の中点を $K, M, N, O$ ,$AC$ と $BD$ の交点を $E$ としたとき,以下が成り立ちました. $$ MO=24 NE=\dfrac{\sqrt{1115}}{2} KO=20 $$このとき,四角形 $NEKO$ の面積としてあり得る値の総和を求めてください.
答えは正整数になるので,半角数字で解答してください.
$n^2+78n-79$ を $100$ で割った余りが平方数とならないような最小の正整数 $n$ を求めよ.
半角数字で入力してください(数字のみ)。
△ABCについて、Aから直線BCに下ろした垂足をD、点Bから直線CAに下ろした垂足をE、△ABCの垂心をHとしたとき以下が成立しました。$$AH=3,AE=2,AC=5$$△AHB:△HCDは互いに素な自然数a,bを用いてa:bと表せるのでa+bの値を解答してください。
半角数字を入力してください。
$86^{48}-64$ を $864$ で割った余りを求めよ。
$1$ 以上 $5$ 以下の整数しか項に持たない全 $2025$ 項の数列があり,任意の連続する $3$ 項において以下を満たします.
例えば,$1, 1, 1, 1, \ldots$ や $1, 3, 5, 4, \ldots$ は条件を満たします.このような数列は $N$ 個あります.$N$ を素数 $677$ で割った余りを求めてください.
半角数字で解答してください.
ボール100個をランダムに20人に分ける。10人が1組の生徒で、10人が2組の生徒である。ボールが全く貰えない人がいてもよい。全てのボールは区別できず、分け方は$ _{119}C_{19}$通りあるが、それぞれの分け方は同様に確からしい。 1組の生徒のうち、それぞれの持つボール数の総積をポイントとする。ポイントの期待値は互いに素なA,Bで$\frac{A}{B}$と表せるので、A+Bを解答せよ。
円Oの直径BCを斜辺とし、円周上に点Aを取った三角形ABCと、線分AOを少し延長したところに点Dを取った三角形BCDがある。そこに、∠Aから辺BDに垂直な線分を書き、その交点を点Fとした。EO=DO,∠OCD=25°のとき、∠BAFは何度ですか。
例)〇〇°
△ABC(AB<AC)の垂心をH、外心をOとし、直線HOと辺AB,BCの交点をD,Eとし、点Eは線分BCを3:1に内分している。このとき、AD/DBの値を求めなさい。ただし、Bの側からD,H,O,Eの順に位置している。
互いに素な正の整数a,bを用いて、b/aの形で答えてください。 解答には AD/DB=b/aと答えてください。