ある演算子⭐︎を次のように定めます。 $$ a⭐︎b=ab+a+b $$ このとき、$x$についての方程式$x⭐︎(x+2)=-1$を解きなさい。
「$x=$」の形から始めなさい。
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
$P=122333444455555666666777777788888888999999999 $とする。 $P$を素因数分解せよ。
$P$の素因数の総積を半角数字で入力してください。 ただし、この問題は難しい計算をする必要がないことが保証されます。
△ABCについて、Aから直線BCに下ろした垂足をD、点Bから直線CAに下ろした垂足をE、△ABCの垂心をHとしたとき以下が成立しました。$$AH=3,AE=2,AC=5$$△AHB:△HCDは互いに素な自然数a,bを用いてa:bと表せるのでa+bの値を解答してください。
半角数字を入力してください。
以下の $x$ に関する $100$ 次方程式の(重解を含む)$100$ 個の複素数解を $\alpha_1,\alpha_2,...,\alpha_{100}$ とします. $$x^{100}+x^{99}+2025x+12=0$$
このとき,以下の値を求めてください. $$\sum_{k=1}^{100} {\alpha_k}^{100}$$
整数で解答してください.
https://x.com/atwr0711/status/2000173940698927172?s=20 こちらの14番の問題の改題です.
$n^2+78n-79$ を $100$ で割った余りが平方数とならないような最小の正整数 $n$ を求めよ.
半角数字で入力してください(数字のみ)。
正整数値に対して定義され正整数値をとる関数 $f(x)$ は,任意の正整数 $a, b, c$ において,以下を満たしました. $$ f(a)+f(b)+f(c)=f(abc)+2 $$また,$f(15)=15$ を満たすとき,$f(2025)$ としてあり得る値の総和を求めてください.
半角数字で解答してください.
0,1,2,……,8 の数字から一つずつ選んでa,b,c,d,e,f,gに代入するという操作を考える。 数字の重複を許さないとき、十進表記された7桁の数abcdefgが3の倍数となる確率を求めよ。 ただし、a=0の場合も認めます。
互いに素な正整数q,pを用いて p/q と表せるため、p+qを解答してください。
$ $ $0$ 以上 $9$ 以下の整数 $a, b, c, d$ に対し,数列 $(x_0, x_1, ..., x_{1110})$ を次のように定めます:
$x_{1110}$ のとり得る値の総和を求めて下さい.
答えは非負整数値であることが保証されます.半角英数にし,答えとなる非負整数値を入力し解答して下さい.
0,1,2,……,8 の数字から一つずつ選んでa,b,c,d,e,f,gに代入するという操作を考える。 数字の重複を許すとき、十進表記された7桁の数abcdefgが3の倍数となる確率を求めよ。 ただし、a=0の場合も認めます。 (似た問題を投稿しています。解答する場所を間違えないように注意してください。)
互いに素な正整数p,qを用いてp/qと表せるため p+qを解答してください。
$AD$ と $BC$ が平行であるような等脚台形 $ABCD$ において,$AB, BC, CD, DA$ の中点を $K, M, N, O$ ,$AC$ と $BD$ の交点を $E$ としたとき,以下が成り立ちました. $$ MO=24 NE=\dfrac{\sqrt{1115}}{2} KO=20 $$このとき,四角形 $NEKO$ の面積としてあり得る値の総和を求めてください.
答えは正整数になるので,半角数字で解答してください.
$N, E, K, O$ には,$1$ 以上 $9$ 以下の相異なる正整数が入ります. $$ N\times{E}\times{N}\times{E}\times{K}\times{O}=K\times{O}\times{N}\times{E}\times{K}\times{O} $$を満たすとき,$N+E+K+O$ としてあり得る値の最大値と最小値の積を求めてください.
答えは正整数になるので,半角数字で解答してください。
ボール100個をランダムに20人に分ける。10人が1組の生徒で、10人が2組の生徒である。ボールが全く貰えない人がいてもよい。全てのボールは区別できず、分け方は$ _{119}C_{19}$通りあるが、それぞれの分け方は同様に確からしい。 1組の生徒のうち、それぞれの持つボール数の総積をポイントとする。ポイントの期待値は互いに素なA,Bで$\frac{A}{B}$と表せるので、A+Bを解答せよ。
ある神社ではおみくじを販売していて、おみくじの内容について次のようなことが分かっています。
・くじは2026本あり、それぞれに運勢が1つ書いてある。 ・運勢は7種類あり、大吉、中吉、小吉、凶、大凶、吉、平である。 ・(大吉の本数):(中吉の本数)=5:7 ・(中吉の本数):(小吉の本数)=9:11 ・(小吉の本数):(凶の本数)=7:4 ・(凶の本数):(大凶の本数)=11:8 ・(吉の本数):(平の本数)=5:2
平の本数を求めてください。
答えの数字を半角数字で入力してください。
ここ3年ぐらい吉しか引いてないです。 (追記)今年も吉だったので4年連続です。