整数問題 等式

reito 自動ジャッジ 難易度: 数学 > 競技数学
2025年12月29日19:20 正解数: 3 / 解答数: 3 (正答率: 100%) ギブアップ数: 0
整数問題

問題文

x,y,zを自然数とする。
xy+xz = x+y+z となるような(x,y,z)の組はいくつあるか。

解答形式

数字のみを記入すること。例:3組ある場合は 3


ヒント1

= x の形に直す。

ヒント2

左辺にy,zを移すと、 xy+xz-y-z = xとなる。
ここで、左辺を因数分解する。

ヒント3

左辺を因数分解すると、
(x-1)(y+z) = x となる。x,y,zが自然数となることに着目し、左辺の(x-1)と右辺のxの関係を考える。

ヒント4

x=1のとき、左辺がゼロになるため不適切。x≧3のとき、(x-1)≧2となるが、このとき必ずxと(x-1)は互いに素となるので、不適切。
よって、x=2のみとなる。


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

(A)

sembri 自動ジャッジ 難易度:
3日前

5

問題文

正整数$N$を$7,10,13,16,19$で割った余りがそれぞれ$2,3,4,5,6$であるとします。このとき$N$を$1729$で割った余りを求めてください。


問題文

次の連立方程式において、x,yの値を求めよ
ただし、x>yとする
4x²+4x-4y²=-1
x²+6x+6y=61

解答形式

すべて半角でx=◯,y=◯と入力
分数は分子/分母と入力
例 x=1,y=-1/3

9月前

5

問題文

四角形$ABCD$があり、次の条件を満たします。

$∠A=∠B=∠C, ∠D=135°, BC=4\sqrt{6}, CD=8$

この四角形の面積$S$は$a + \sqrt{b}$の形で表されるので、$a + b$を解答してください。

解答形式

半角数字で答えをそのまま入力。

余談

問題に不備等あればtwitterのDMなどで気軽にお願いします。
Tex初めて使いました。
問題思いつくのは簡単なんですけど、解説は未だに上手く書けませんね…

13日前

3

問題文

以下の $x$ に関する $100$ 次方程式の(重解を含む)$100$ 個の複素数解を $\alpha_1,\alpha_2,...,\alpha_{100}$ とします.
$$x^{100}+x^{99}+2025x+12=0$$

このとき,以下の値を求めてください.
$$\sum_{k=1}^{100} ({\alpha_k}^{100}+{\alpha_k}^{99})$$

解答形式

整数で解答してください.

補足

https://x.com/atwr0711/status/2000173940698927172?s=20
こちらの14番の問題と同じです.

素因数分解

mathken 自動ジャッジ 難易度:
2日前

3

問題文

$n$ を自然数とする。 $n^5+n+1$ が互いに異なる $4$ つの素数の積で表されるような $n$ のうち最小のものを答えよ。

13日前

3

問題文

以下の $x$ に関する $3$ 次方程式は相異なる $3$ 個の複素数解をもつので,それぞれの解を $\alpha,\beta,\gamma$ とします.
$$x^3-2^{2025}x^2+24x-2^{2023}=0$$

このとき,以下の値は整数になるので,その正の約数の個数を求めてください.
$$(\alpha+\beta)(\beta+\gamma)(\gamma+\alpha)$$

解答形式

整数で解答してください.

補足

https://x.com/atwr0711/status/2000173940698927172?s=20
こちらの31番の問題と同じです.

100G

Ryomanic 自動ジャッジ 難易度:
6日前

4

問題文

$\angle{ADC}=\angle{BCD}=90^\circ,BAD>90^\circ$なる台形$ABCD$について,
$$\angle{BAC}=90^\circ,AB=4,AC=3$$
が成立した.$ABCD$の面積を求めよ.

解答形式

求める値は互いに素な正整数$p,q$を用いて$\frac{p}{q}$と表せるので,$p+q$を解答してください.

幾何No.3

alpha 自動ジャッジ 難易度:
27日前

6

問題

$AB=3$なる鋭角三角形$ABC$について, $AC$, $BC$の中点をそれぞれ$M$, $N$とすると, $AN=4$が成立した. また, 三角形$ANC$の外接円と直線$MN$との交点のうち, $N$でないほうを$D$とすると, $DC=9$が成立した. このとき, $AD$の長さの二乗は互いに素な正整数$a$, $b$を用いて$\frac{a}{b}$と表されるので$a+b$を解答せよ.

整数問題

smasher 自動ジャッジ 難易度:
55日前

6

問題文

$p,q$を素数とする。
$pq(p+q)$が平方数となるものをすべて求めよ。

解答形式

ありうる組$(p,q)$について$pq$の総和を半角数字で入力してください。

幾何No.2

alpha 自動ジャッジ 難易度:
27日前

5

問題

$AB=AC$なる二等辺三角形$ABC$について, $A$から$BC$に下した垂線の足を$H$とし, 線分$AH$上に点$P$をとると,
$$
AP=5 PH=3 ∠PBC=∠PAC
$$
が成立した. このとき, 三角形$ABP$の面積の2乗を解答せよ.

素因数分解

smasher 自動ジャッジ 難易度:
50日前

7

問題文

$P=122333444455555666666777777788888888999999999 $とする。
$P$を素因数分解せよ。

解答形式

$P$の素因数の総積を半角数字で入力してください。
ただし、この問題は難しい計算をする必要がないことが保証されます。

最大最小問題①

MACHICO 自動ジャッジ 難易度:
2月前

5

問題文

正の実数 $x,y,z$ が $x+y+z=xyz$ を満たしているとき,

$$\dfrac{x}{1+x^2}+ \dfrac{y}{1+y^2}+ \dfrac{z}{1+z^2}$$

の最大値を求めてください.

解答形式

求める値は互いに素な正整数 $a,c$ および平方因子を持たない正整数 $b$ を用いて, $\dfrac{a \sqrt{b}}{c}$ と表せるから, $a+b+c$ を解答してください.