A

mani 自動ジャッジ 難易度: 数学 > 競技数学
2026年1月3日21:00 正解数: 13 / 解答数: 20 (正答率: 65%) ギブアップ数: 0
この問題はコンテスト「あけおめコンテスト2026」の問題です。

全 20 件

回答日時 問題 解答者 結果
2026年1月4日18:29 A puratoku
正解
2026年1月4日11:13 A pencoder
正解
2026年1月3日23:46 A epsug
正解
2026年1月3日22:20 A asmin
正解
2026年1月3日22:05 A kou0707
不正解
2026年1月3日22:04 A kou0707
不正解
2026年1月3日22:03 A kou0707
不正解
2026年1月3日21:59 A aaabbb
正解
2026年1月3日21:54 A arararororo
正解
2026年1月3日21:51 A Mid_math28
正解
2026年1月3日21:49 A Weskdohn
正解
2026年1月3日21:48 A poinsettia
正解
2026年1月3日21:45 A syusyu
正解
2026年1月3日21:41 A kiwi1729
正解
2026年1月3日21:40 A jayjay
正解
2026年1月3日21:39 A kiwi1729
不正解
2026年1月3日21:37 A udonoisi
不正解
2026年1月3日21:31 A orangekid
正解
2026年1月3日21:30 A udonoisi
不正解
2026年1月3日21:30 A orangekid
不正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

G

uran 自動ジャッジ 難易度:
3日前

23

問題文

$2 \times 6$ のマス目があります.全てのマスそれぞれに $0,2,6$ のうち一つを選んで書き込みます.以下の条件を満たすような書き込み方は何通りありますか.
・どの辺を共有して隣り合う $2$ マスについてもそれらに書き込まれた数の和がある非負整数 $a$ を用いて $2^a$ と表せる.
ただし,回転・反転によって一致するものも区別します.

T

tomorunn 自動ジャッジ 難易度:
3日前

29

$10$進法での正整数$N$の桁和を$S(N)$とおきます.
$2026=1013\times 2$,
$2+0+2+6=(1+0+1+3)\times 2$
のように,$N=p\times q$と素因数分解できるときに,
$S(N)=S(p)\times S(q)$と表せるような正整数$N$を今年の数とよびます.
4桁の今年の数のうち2026は小さい方から何番目か求めてください。

H

korosaikoro 自動ジャッジ 難易度:
3日前

20

問題文

ある正整数 $n$ が今年の数であるとは $n=a^b-(a-1)^b$ とあらわせるような正整数の組 $(a,b)$ が存在しない数であるとします.例えば$2026$は今年の数です.
このとき,$2026$以下の今年の数はいくつありますか.

S

uran 自動ジャッジ 難易度:
3日前

43

問題文

全ての桁が偶数からなる正整数を今年の数とします.例えば $2026$ は今年の数です.
$2026$ 以下の今年の数は全部でいくつありますか.

U

mani 自動ジャッジ 難易度:
3日前

21

$3$ 点 $A,B,C$ はこの順で一直線に並んでおり,$AC,AB,BC$ を直径とする円をそれぞれ $\omega_1,\omega_2,\omega_3$ とし,点 $B$ を通る直線と $\omega_1,\omega_2,\omega_3$ の交点を,$P,Q,B,R,S$ の順に並ぶように定めると,
$$AB<BC,\quad AB=\sqrt{390},\quad QB=18,\quad BR=24$$
が成り立ちました.このとき,互いに素な正整数 $m,n$ を用いて $PB:BS=m:n$ と表されるので,$m+n$ の値を解答してください.

O

tomorunn 自動ジャッジ 難易度:
3日前

43

以下の操作を数字が$100$以下になるまで繰り返し行います.
・下$2$桁の数字を取り除き、残った数字にかける.
たとえば,$2108$は,$21×8=168$となります.
このとき、$2$回目の操作までに数字が$100$になる数を今年の数と呼ぶことにします.
今年の数のうち、2026は何番目に小さいですか?
ただし、100は今年の数に含まれないものとします.

🎉

tomorunn 自動ジャッジ 難易度:
3日前

20

$20\times26$のマス目のいずれかにおせちが置かれており,太郎君はおせちが置かれていないいずれかのマスから,通るマスの数が最小となるようにおせちまで移動します.
お年玉を太郎君が通ったマスの個数と定義するとき,
おせちと太郎君の初期位置すべてについて,お年玉の総和を求めてください.
ただし,最初のマスと最後のマスも通ったマスとみなします.

問題7

tomorunn 自動ジャッジ 難易度:
3月前

19

問題文

1辺が10の正三角形ABCがある.
線分AB上に $AD=3$を満たす点D, 線分BC上に $BE=3$を満たす点Eがある.
線分DEの垂直二等分線と直線ACの交点を $F$とし, 三角形ABCの外接円と交わる点のうち, 直線ABに関して $C$ と反対側にある点を $K$ とする.
直線EFと直線CKの交点を $L$とするとき, $EL$の長さを求めよ. なお, 答えは $\sqrt{a}-b$で表されるため, $a+b$を求めよ.

解答形式

半角数字で入力してください。

問題4

Youteru 自動ジャッジ 難易度:
24日前

18

$S=$$\{$$\sqrt{1},\sqrt{2},\dots,\sqrt{n} $$\}$の部分集合であって、次を満たすものの個数をmとする。
・要素が3つ
・どの2つを選んでも、2つの比の値が有理数となる

n=mとなるnを全て求め、その総和を求めなさい。

p1

lamenta 自動ジャッジ 難易度:
4月前

28

問題文

$\quad$ $BC=8$ なる三角形 $ABC$ において,内接円の半径は $2$ ,角 $A$ 内の傍接円の半径は $5$ であった.このとき,三角形 $ABC$ の面積を求めよ.

解答形式

求める値は互いに素な正の整数 $a,b$ を用いて $\dfrac ab$と表せるので, $a+b$ を半角数字で解答してください.

問題1

tomorunn 自動ジャッジ 難易度:
3月前

11

問題文

三角形 $OAB$ がある.点 $C$ を$\angle CAO=\angle BAO$, $AC\perp CO$ となるように辺 $AB$ に対し点 $O$ と同じ側に取る.
また,点 $B$ から直線 $CO$ に引いた垂線の足を $D$ とする.
$C$ を通り直線 $OB$ に垂直な直線と $D$ を通り直線 $OA$ に垂直な直線の交点を $G$ とするとき,
$CD=17,\, GO=8,\, GC=15$ である.
このとき $AB$ の長さは互いに素な正整数 $a,b$ と平方因子を持たない正整数 $c$ を用いて $\dfrac{b\sqrt{c}}{a}$ と書けるので,$a+b+c$ を求めよ.

解答形式

半角数字で入力してください。

問題6

Mid_math28 自動ジャッジ 難易度:
3月前

26

問題文

同一平面上に $2$ 円 $\omega_{1},\omega_{2}$ があり、相異なる$2$ 点 $A,B$ で交わっています。$A$ における $\omega_{2}$ の接線を $l_{A}$ 、$B$ における $\omega_{1}$ の接線を$l_{B}$ とし、$l_{A}$ と $l_{B}$ の交点を $X$ とします。また、$l_{A}$ と $\omega_{1}$ の交点のうち、$A$ でない点を $C$、$l_{B}$ と $\omega_{2}$の交点のうち、$B$ でない点を $D$ とすると、$A,C,X$ はこの順に同一直線上にあり、以下が成立しました。
$$XB=9  BC=2  AD=5$$
このとき、線分 $BD$ の長さを求めてください。
なお、$\omega_{2}$ の半径の方が $\omega_{1}$ の半径より大きいことが保証されます。

解答形式

$BD$ の長さは互いに素な整数 $a,b$ を用いて $\dfrac{a}{b}$ と表されるので、$a+b$ を解答してください。