次の問いに当てはまるx値を求めよ
この式はx/3になる $$ \frac{2027^{2027} - 2027}{2027^{2026} - 1} + \left( \frac{2026^{2} + 2026}{2027} - 2026 \right)^{2027}$$
x=は必要ありません。xに当てはまる数値のみ解答すれば良いです。
必要なのは根性と自信のみ!
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
以下の値を求めてください。 $$ \sum_{n=1}^{90}\sum_{k=1}^{n}\Big\lfloor{\frac{46}{91}+\frac{k-1}{n}}\Big\rfloor $$
答えは整数値になるので、半角数字で入力してください。
点の定義は次をチェック(https://pororocca.com/problem/2047/) 円$X,X',ω$に接する円の内,小さい方の円$T'$の半径を求めよ.
答えは互いに素な整数$a,b,c,d$を用いて,$\frac{a+b\sqrt{c}}{d}$と書けるので,$a+b+c+d$を求めて下さい.但し$d>0$とします. なお,半角で打ち込むこと.
以下の表はある旧帝一工(前期)で過去に出題された数学の問題に出てくる関数の増減表である。 出題された年度と大学名を答えてください。 $※$ $f(x)$ とは私が勝手に置いたものです。
・インターネット上の過去問サイトに掲載されている旧帝一工(医科歯科を除く)の問題です。 ・過去問データベースなどで問題を確認したり,検索してみても構いません。 ・ヒントと称していますが,ヒントがないと一意に定まらない場合があります。
年度と大学名を答えてください 例) 年度は半角数字です。 2026年大阪大学 2026年九州大学 2026年京都大学 2026年東京工業大学 2026年東京大学 2026年東北大学 2026年名古屋大学 2026年一橋大学 2026年北海道大学
2022^2022を10で割った余り。
どうやってといたかもかいてね。 ひらがなでいいよ。 これはさんすうだからね。
半径$15$の円$ω$についてある直径$AB$を考える. $AB$を三等分する点を順に$P,Q$とし(つまり$A・P・Q・B$の順に点が並ぶ), $AP$を直径とする円$X$を描く. また$AB$に直交する直径$CD$について同様に$R,S$を取り($C・R・S・D$の順),$CR$を直径とする円$X'$を描く. ここで円$X$の接線の内$CD$と平行で且つ円$X'$側のものを直線$F$,円$X'$の接線の内$AB$と平行で且つ円$X$側のものを直線$G$とする. 直線$F,G,$円$ω$に接する円$T$として考えられるものは$2$つあるが,そのうち小さい方の半径を求めよ.
答えは整数$n,l$と平方因子を持たない自然数$m$で$n\sqrt{m}+l$と書ける. $n+m+l$を求めて下さい. 全て半角で打ち込むこと.
続編(normal):https://pororocca.com/problem/2048/
例)(1)はb√c/aとなるので、a,b,cの値をそれぞれ1,2,3行目に書いてください ⑵はdπ/eとなるので、d,eの値を4,5行目に書いてください
aiueaiuの7字を並べるとき少なくとも1つの「ai」が「ue」よりも前にあるのは何通りか。
例)半角英数字。
平面上に鋭角三角形ABCがある。以下の条件をみたすように点Dを定める。 「$AB^{2}+BC^{2}+CA^{2}=2CD^{2}$ $BC=AD$ $点Dと点Bは直線ACに関して反対の向きにある$」 ここで線分ACを直径とする円と線分AD,BCとの交点をそれぞれE,Fとおき、 直線ACとEFの交点をPとするとAC=100,EF=90が成立した。 このとき、線分APの長さを求めよ。
互いに素な正の整数p,qを用いてp/qと表されるので、p/qと解答してください
正十二角形ABCDEFGHIJKL があります。 袋の中に A〜L までの文字が書かれた12枚のカードが入っています。この袋からカードを1枚引いては戻す作業を 5回 繰り返します。 引いたカードに記された頂点同士を、円周上の順番に従って結び、多角形を作ります。ただし、以下のルールに従うものとします。 同じ頂点を複数回引いた場合は、1つの頂点としてカウントする。 選ばれた頂点の種類が2種類以下の場合は、多角形ができないものとして面積を0とする。 結んだ線分が多角形の内部で交差しないよう、頂点を結ぶ。 このとき、形成された多角形の面積が、もとの正十二角形の面積のちょうど 1/3 になる確率を求めなさい。
解答はx/yと表せられるのでx+yの値を答えなさい
xy平面上にて、中心が直線y=3x上にあり、直線2x+y=0に接し、点(2,1)を通る円の方程式は(x-a)^2+(x-b)^2=r^2である。 a、b、r^2の値をそれぞれ求めよ。
a○b△R□ ○△□のところに答えの数字を入力してください。 r^2はRと表記してください。 a=2 b=3 r^2=4の場合 a2b3R4と入力
ある数は2の倍数であり、1を引くと3の倍数である。この数を、小さい順で10個答えよ
数字を10個
次の定積分を求めよ。$$\int_{0}^{\frac{π}{2}}{\frac{dx}{1+tanx}}\quad$$