2027年度 高校入試問題

obenben 自動ジャッジ 難易度: 数学 > 中学数学
2026年2月22日18:33 正解数: 2 / 解答数: 2 (正答率: 100%) ギブアップ数: 0

問題文

次の問いに当てはまるx値を求めよ

この式はx/3になる
$$ \frac{2027^{2027} - 2027}{2027^{2026} - 1} + \left( \frac{2026^{2} + 2026}{2027} - 2026 \right)^{2027}$$

解答形式

x=は必要ありません。xに当てはまる数値のみ解答すれば良いです。


ヒント1

必要なのは根性と自信のみ!


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

ガウス記号の処理

sha256 自動ジャッジ 難易度:
13月前

3

問題文

以下の値を求めてください。
$$
\sum_{n=1}^{90}\sum_{k=1}^{n}\Big\lfloor{\frac{46}{91}+\frac{k-1}{n}}\Big\rfloor
$$

解答形式

答えは整数値になるので、半角数字で入力してください。

Circle(normal)

Null 自動ジャッジ 難易度:
17月前

2

問題文

点の定義は次をチェック(https://pororocca.com/problem/2047/)
円$X,X',ω$に接する円の内,小さい方の円$T'$の半径を求めよ.

解答形式

答えは互いに素な整数$a,b,c,d$を用いて,$\frac{a+b\sqrt{c}}{d}$と書けるので,$a+b+c+d$を求めて下さい.但し$d>0$とします.
なお,半角で打ち込むこと.

増減表ソムリエ①

MACHICO 自動ジャッジ 難易度:
3日前

1

問題文

以下の表はある旧帝一工(前期)で過去に出題された数学の問題に出てくる関数の増減表である。
出題された年度と大学名を答えてください。
$※$ $f(x)$ とは私が勝手に置いたものです。

・インターネット上の過去問サイトに掲載されている旧帝一工(医科歯科を除く)の問題です。
・過去問データベースなどで問題を確認したり,検索してみても構いません。
・ヒントと称していますが,ヒントがないと一意に定まらない場合があります。

解答形式

年度と大学名を答えてください
例) 年度は半角数字です。
2026年大阪大学
2026年九州大学
2026年京都大学
2026年東京工業大学
2026年東京大学
2026年東北大学
2026年名古屋大学
2026年一橋大学
2026年北海道大学

糞問

kikutaku 採点者ジャッジ 難易度:
6月前

2

問題文

2022^2022を10で割った余り。

解答形式

どうやってといたかもかいてね。
ひらがなでいいよ。
これはさんすうだからね。

Circle(very easy)

Null 自動ジャッジ 難易度:
17月前

2

問題文

半径$15$の円$ω$についてある直径$AB$を考える.
$AB$を三等分する点を順に$P,Q$とし(つまり$A・P・Q・B$の順に点が並ぶ),
$AP$を直径とする円$X$を描く.
また$AB$に直交する直径$CD$について同様に$R,S$を取り($C・R・S・D$の順),$CR$を直径とする円$X'$を描く.
ここで円$X$の接線の内$CD$と平行で且つ円$X'$側のものを直線$F$,円$X'$の接線の内$AB$と平行で且つ円$X$側のものを直線$G$とする.
直線$F,G,$円$ω$に接する円$T$として考えられるものは$2$つあるが,そのうち小さい方の半径を求めよ.

解答形式

答えは整数$n,l$と平方因子を持たない自然数$m$で$n\sqrt{m}+l$と書ける.
$n+m+l$を求めて下さい.
全て半角で打ち込むこと.

追記

続編(normal):https://pororocca.com/problem/2048/

初等幾何

gurotan 採点者ジャッジ 難易度:
18月前

1

問題

解答形式

例)(1)はb√c/aとなるので、a,b,cの値をそれぞれ1,2,3行目に書いてください
⑵はdπ/eとなるので、d,eの値を4,5行目に書いてください

指数

SOCa 自動ジャッジ 難易度:
22月前

7

問題文

aiueaiuの7字を並べるとき少なくとも1つの「ai」が「ue」よりも前にあるのは何通りか。

解答形式

例)半角英数字。

図形問題

yayuyo_134 自動ジャッジ 難易度:
2日前

3

問題文

平面上に鋭角三角形ABCがある。以下の条件をみたすように点Dを定める。
「$AB^{2}+BC^{2}+CA^{2}=2CD^{2}$
 $BC=AD$
 $点Dと点Bは直線ACに関して反対の向きにある$」
ここで線分ACを直径とする円と線分AD,BCとの交点をそれぞれE,Fとおき、
直線ACとEFの交点をPとするとAC=100,EF=90が成立した。
このとき、線分APの長さを求めよ。

解答形式

互いに素な正の整数p,qを用いてp/qと表されるので、p/qと解答してください

面積の確率

obenben 自動ジャッジ 難易度:
3日前

2

問題文

正十二角形ABCDEFGHIJKL があります。
袋の中に A〜L までの文字が書かれた12枚のカードが入っています。この袋からカードを1枚引いては戻す作業を 5回 繰り返します。
引いたカードに記された頂点同士を、円周上の順番に従って結び、多角形を作ります。ただし、以下のルールに従うものとします。
同じ頂点を複数回引いた場合は、1つの頂点としてカウントする。
選ばれた頂点の種類が2種類以下の場合は、多角形ができないものとして面積を0とする。
結んだ線分が多角形の内部で交差しないよう、頂点を結ぶ。
このとき、形成された多角形の面積が、もとの正十二角形の面積のちょうど 1/3 になる確率を求めなさい。

解答形式

解答はx/yと表せられるのでx+yの値を答えなさい


問題文

xy平面上にて、中心が直線y=3x上にあり、直線2x+y=0に接し、点(2,1)を通る円の方程式は(x-a)^2+(x-b)^2=r^2である。
a、b、r^2の値をそれぞれ求めよ。

解答方式

a○b△R□
○△□のところに答えの数字を入力してください。
r^2はRと表記してください。
a=2 b=3 r^2=4の場合
a2b3R4と入力

Conkom1910615 ジャッジなし 難易度:
7月前

3

問題文

ある数は2の倍数であり、1を引くと3の倍数である。この数を、小さい順で10個答えよ

解答形式

数字を10個

第7問

tsukemono 採点者ジャッジ 難易度:
3月前

3

第7問

次の定積分を求めよ。$$\int_{0}^{\frac{π}{2}}{\frac{dx}{1+tanx}}\quad$$