図の条件が成り立つ三角形において、x で示した辺の長さを解答してください。
x=√アイウ と表されるので、文字列 アイウ を解答してください。
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
正方形と正三角形を組み合わせた以下の図において、青で示した角の大きさを求めてください。
半角数字で解答してください。 解答は度数法で、単位を付けずに0以上180未満の整数として解答してください。
図の条件の下で、青で示した角の大きさを求めてください。
解答を度数法で表し、0以上180未満の数値を半角数字で解答してください。 単位("度・°"など)はつけないでください。
正方形と正三角形を組み合わせた図のような図形について, 青で示した角の大きさを求めてください.
0以上180未満の整数を半角数字で解答してください。 ただし度数法で、単位を付けずに解答してください。
図の条件の下で、緑で示した三角形の面積を求めてください。
半角数字で解答してください。
図の条件において、x の長さを求めてください。 なお、図中オレンジの点は直角三角形の内心です。
解答は x=√a となります。a を半角数字で解答してください。
図のように配置された図形で、半円の半径が5、赤、青、緑の線分の長さがそれぞれ3,X,Yのとき、X2+Y2の値を求めてください。
共通部分を持たない2円と、その共通接線があります。図中の同じ色で示した線分の長さが等しいとき、2円の半径比を求めてください。 ※図は正確でないことに注意
大円の半径をR1、小円の半径をR2とすると、R1:R2=ア:イです。文字列 アイ を解答してください。 例:R1:R2=5:2 であれば 52 と解答
半円の内部に正方形を2つ、図のように配置しました。赤い線分の長さ(=2つの正方形の一辺の差)が3であるとき、青で示した部分の面積と緑で示された部分の面積の差を求めてください。
図のように正五角形と正三角形が配置されています。緑のxで示した角度を求めてください。 なお、赤で示した2つの線分は長さが等しく、青で示した角は直角です。
度数法で、単位を付けずに0以上180未満の数を半角数字で解答してください。
扇形内部に図のように線を引きました。青い三角形の面積が12のとき、緑の三角形の面積を求めてください。
x=a 度です。a を半角数字で解答してください。
2つの三角形ABCとQCRが図のように配置されています。各点が画像に記した条件を満たすとき、赤い三角形の面積を求めてください。