求面積問題27

Kinmokusei 自動ジャッジ 難易度: 数学 > 算数
2021年10月16日23:57 正解数: 12 / 解答数: 12 (正答率: 100%) ギブアップ数: 1

全 12 件

回答日時 問題 解答者 結果
2024年4月1日21:22 求面積問題27 hairtail
正解
2024年3月10日14:49 求面積問題27 barreleye
正解
2023年11月7日21:18 求面積問題27 natsuneko
正解
2023年10月30日17:06 求面積問題27 nmoon
正解
2023年2月23日13:09 求面積問題27 ゲスト
正解
2023年2月13日19:22 求面積問題27 a_math
正解
2023年2月11日21:58 求面積問題27 tsx
正解
2022年5月7日22:50 求面積問題27 ゲスト
正解
2022年1月14日13:12 求面積問題27 tima_C
正解
2021年10月30日15:31 求面積問題27 ゲスト
正解
2021年10月20日17:35 求面積問題27 naoperc
正解
2021年10月17日11:28 求面積問題27 ゲスト
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

2年前

6

問題文

図の条件の下で、赤で示した線分の長さを求めてください。

解答形式

半角数字で解答してください。

求角問題17

Kinmokusei 自動ジャッジ 難易度:
2年前

8

問題文

図の条件の下で、青で示した角の大きさを求めてください。

解答形式

解答を弧度法で表すと、$x=\dfrac{a}{b}\pi$ です。$a+b$を解答してください。
ただし、$a,b$ は互いに素な正整数で、$0\leq \dfrac{a}{b} \lt 1$ を満たします。

求角問題16

Kinmokusei 自動ジャッジ 難易度:
2年前

7

問題文

正六角形内に、図のように円を配置しました。青で示した角の大きさを求めてください。

解答形式

$\angle x=a°$ です。$a$ に当てはまる0以上180未満の数値を半角で回答してください。

2年前

6

問題文

図の条件の下で、緑で示した三角形の面積を求めてください。

解答形式

半角数字で解答してください。

2年前

6

問題文

図において、青で示した部分の面積と、赤で示した部分の面積の差が $63$ のとき、四角形 $ABCD$ の面積を求めてください。

解答形式

半角数字で解答してください。

求面積問題30

Kinmokusei 自動ジャッジ 難易度:
2年前

9

問題文

正三角形・長方形・半円を組み合わせた以下の図形について、図中緑の線分の長さが6のとき、図形全体の面積を求めてください。

解答形式

半角数字で解答してください。

求長問題29

Kinmokusei 自動ジャッジ 難易度:
2年前

8

問題文

図の条件において、$x$ の長さを求めてください。
なお、図中オレンジの点は直角三角形の内心です。

解答形式

解答は $x=\sqrt a$ となります。$a$ を半角数字で解答してください。

2年前

6

問題文

図の条件の下で、青で示した線分の長さを求めてください。

解答形式

半角数字で解答してください。

2年前

6

問題文

図の条件の下で、青で示した線分の長さ $x$ を求めてください。
なお、図中の赤点(centroid)は三角形の重心です。

解答形式

$x^2$ は正整数になるので、この値を解答してください。

23月前

9

問題文

図の条件の下で,半円の直径 $x$ を求めてください.

解答形式

$x^2$ の値を半角数字で解答してください.

2年前

8

問題文

図の条件の下で、青で示した角の大きさを求めてください。

解答形式

$x=a$ 度です。$a$ を半角数字で解答してください。

3年前

7

【補助線主体の図形問題 #020】
 今週の図形問題は円がらみの求長問題を用意しました。いつも通り暗算解法も仕込んであります。初等幾何猛者の方はぜひ脳内で処理しきってみてください。猛者とまではいかないという方もじっくりと挑戦してもらえたら嬉しいです!

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
\def\myang#1{\angle \mathrm{#1}}
\renewcommand\deg{{}^{\circ}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

ヒント内容の予告

  1. 全体方針をぼんやりと
  2. ヒント1の続き
  3. ヒント2をやや具体的に
  4. ヒント3の続き