全問題一覧

カテゴリ
以上
以下

大きい数の位の値

noname 自動ジャッジ 難易度:
21日前

3

問題文

$1998^{2024}$の下$2$桁を求めよ。

解答形式

1行目に半角整数で入力してください。

素直な整数

kusu394 自動ジャッジ 難易度:
5月前

12

問題文

正整数 $N$ が 素直 であるとは以下の条件をともに満たすことを言います.

  • $N$ は十進法表記で $6$ 桁であり,各桁に $0$ も $9$ も含まない数である.
  • $N$ の上 $i$ 桁目を $a_i$ とするとき,「$a_1 \le a_2 \le \cdots \le a_6$」もしくは「$a_1 \ge a_2 \ge \cdots \ge a_6$」のいずれかが成り立つ.

素直な整数の総和を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

2人で肩にpを乗せて

kusu394 自動ジャッジ 難易度:
6月前

12

問題文

素数 $p,q$ が
$$4^p+2^p+1=p^2q$$を満たします. このようなすべての組 $(p,q)$ に対して, $p+q$ の総和を解答してください.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

素数と方程式

noname 自動ジャッジ 難易度:
8月前

2

問題文

$p,q$を素数、$n$を整数とします。
$$
p^{4}+2q^{2}-2^{n}=635
$$
を満たす$p,q,n$の組$(p,q,n)$を全て求めてください。

解答形式

$p+q+n$の値の総和を半角で解答してください。


${}$ 西暦2024年問題第6弾です。いよいよ整数問題のお出ましとなりました。ある程度は手を動かす必要がありますが、あることに気づけば調べる候補をぐっと減らすことができます。約数の個数を求めるのが面倒な方はWolfram|Alpha https://www.wolframalpha.com なども併用して構いません。

解答形式

${}$ 解答は求める$n$の最小値をそのまま入力してください。
(例)$n=2106$ → $\color{blue}{2106}$

2024⑤

seven_sevens 自動ジャッジ 難易度:
12月前

8

問題文

$m^2+2024=n^2$となる自然数の組$(m,n)$をすべて求めよ。

解答形式

(m,n)
という形で解答してください。
答えが複数ある場合は改行区切りで入力してください。
また、mが小さい順に解答をしてください。

2024④

seven_sevens 自動ジャッジ 難易度:
12月前

10

問題文

$a^n+b^m=2024(a>b>0,n>1,m>1)$である自然数の組$(a,b,n,m)$をすべて求めよ。

解答形式

解答と解答を改行区切りで入力してください。


2023/11/8追記

(a,b,n,m)
という形で解答をしてください。
複数ある場合は前述の通り改行区切りで入力してください。
また、aが小さい順に、aが同じ場合はbが小さい順に解答してください。


2023/11/24追記

こちらのミスで自動判定の解答が指定した回答形式とあっていませんでした。すみませんでした。

2024③

seven_sevens 自動ジャッジ 難易度:
13月前

8

問題文

数列$a_n$を次のように定める。
$a_1=1$
$a_n=n^{a_{n-1}}$
このとき、以下の問いに答えなさい。
(1)$a_{2023}$の一の位はいくつか求めよ。
(2)$a_{2024}$の一の位はいくつか求めよ。
(3)$a_{2024}$の百の位はいくつか求めよ。

解答形式

(1) ~~~
(2) ~~~
の形でお願いします。問題番号と解答、一つの小問の解答と解答の間は半角スペースを開けてください。
解答は数字のみお書きください。

2024②

seven_sevens 自動ジャッジ 難易度:
13月前

12

問題文

$[\sqrt[11111]{2024!}]$を求めよ。ただし、$\log_{10}2=0.3010$、$\log_{10}3=0.4771$とする。

解答形式

数字のみを記入してください。

2024①

seven_sevens 自動ジャッジ 難易度:
13月前

13

問題文

(1)$2024!$は何回$2$で割り切ることができるか答えよ。
(2)$[\sqrt{2024}]$、$[\sqrt[3]{2024}]$の値を求めよ。ただし、$[x]$は$x$を超えない最大の整数を表すものとする。

チャレンジ課題

(3)$2024!$の約数の個数は$10^{91}$より大きいことを示せ。ただし、$1$から$2024$までの素数は$306$個である。

解答形式

(1) ~~~
(2) ~~~
の形でお願いします。問題番号と解答、一つの小問の解答と解答の間は半角スペースを開けてください。
解答は数字のみお書きください。


${}$ 西暦2023年問題第7弾、今年最後の西暦問題です。ラストを飾るのは循環小数です。循環小数というテーマ自体が奥深いわけですが、その一端を味わえるようにしました。どうぞ最後までお付き合いください。

お知らせ

${}$ いつもの図形問題ですが、明日1月8日(日)は出題をお休みして、翌週1月15日(日)から再開する予定です。お待たせしていますが、またどうぞよろしくお願いします。

解答形式

${}$ 解答は、$N$の値をそのまま入力してください。「$N=$」の記載は不要です。
(例) $N=107$ → $\color{blue}{107}$


${}$ 西暦2023年問題第6弾です。桁数を少し大きくした割り算と余りの問題をこさえてみました。面倒な計算をできるだけ避ける工夫を探してみてください。(完全には避けられないので、電卓や電卓機能サービスを用意しておいた方がいいかもしれません)

解答形式

${}$ 解答は、この8桁の自然数をそのまま入力してください。
(例) $\square\square\square\square$に入るのが$0106$で8桁の自然数が$20010623$となるとき
   → $\color{blue}{20010623}$