全問題一覧

カテゴリ
以上
以下

KOTAKE杯001(F)

MrKOTAKE 自動ジャッジ 難易度:
11月前

47

問題文

四面体$ABCD$は以下を満たす.
$AB=AC=AD=13,BC=6,CD=8,BD=10$
このとき四面体$ABCD$の体積を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯001(K)

MrKOTAKE 自動ジャッジ 難易度:
11月前

48

問題文

$AB=AC=90$の三角形$ABC$があり線分$BC$の中点を$M$とすると
三角形$ABC$の垂心$H$は線分$AM$を$4:1$に内分した.
このとき三角形$ABC$の面積の$2$乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯001(S)

MrKOTAKE 自動ジャッジ 難易度:
11月前

32

問題文

$AB:AC=1:2$である三角形$ABC$があり$AC$の中点を$M$とする.
三角形$ABM$の外接円と$BC$の交点のうち$B$でないものを$D$とおき,
$AC$上に$∠ADE=90°$となる点 $E$をとると$CD=30,DE=10$であった.
このとき$BD$の長さを解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯001(L)

MrKOTAKE 自動ジャッジ 難易度:
11月前

31

問題文

$AB=30,AC=36$の三角形$ABC$があり線分$BC$上に$BDEC$の順に並び$BD:DE:EC=1:5:3$となるよう
点$D,E$をとると,線分$AB$と$AC$に接し点$D,E$を通る円が存在した.
このとき$BC$の長さの$2$乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯001(C)

MrKOTAKE 自動ジャッジ 難易度:
11月前

55

問題文

$AB=33,BC=41,CA=26$の三角形$ABC$の面積の$2$乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯001(E)

MrKOTAKE 自動ジャッジ 難易度:
11月前

44

問題文

三角形$ABC$があり三角形$ABC$の外接円における点$A$の接線と直線$BC$は直交し,
$AB=15,AC=20$であった.このとき三角形$ABC$の面積を解答しなさい.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください

KOTAKE杯001(R)

MrKOTAKE 自動ジャッジ 難易度:
11月前

24

問題文

外心を$O$とする三角形$ABC$があり線分$BC$上に点$D$をおくと以下が成立した.
$AD=CD,BD-CD=15,OB=24,OD=9$
このとき$AB$の長さを解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

Test 2

seven_sevens 採点者ジャッジ 難易度:
11月前

2

この問題は、コンテスト機能のテストをするために投稿します。大喜利でもどうぞ。
$$2+2=?$$

test

seven_sevens 採点者ジャッジ 難易度:
11月前

5

この問題は、コンテスト機能のテストをするために投稿します。大喜利でもどうぞ。
$$1+1=?$$

韓国産高校数学問題 - 1

nflight11 自動ジャッジ 難易度:
11月前

7

問題文

すべての正整数 $n$ に対して $a_{n+1}=a_{n}+a_{n+2}$ を満たす数列 $\{a_n\}$ に対して、次の式が成立する。

$$\sum_{n=1}^\infty \frac{a_n}{2^n}=1998, \sum_{n=1}^\infty \frac{a_{3n}}{3^n}=1106$$

この時、$|a_{1998}a_{1106}|$を求めよ。

解答形式

答えをそのまま入力しなさい。

300G

MrKOTAKE 自動ジャッジ 難易度:
11月前

3

問題文

三角形$ABC$があり,また点$C$を通る点$B$で$AB$に接する円$O$がある.円$O$上でありかつ
三角形$ABC$の内部に$BD=CD$となる点$D$をとり$AC$と円$O$の交点のうち$C$でないものを$E$とおくと
$AB=15,BC=10,DE=16$であった.このとき$AC$の長さの$2$乗は互いに素な正整数$a,b$によって$\frac{a}{b} $と表されるので$a+b$の値を解答してください.
ただし点$A,C,E$は$ACE$の順に一直線上に並んでいるものとする.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

いろんな選び方

noname 自動ジャッジ 難易度:
11月前

3

$n$を自然数とします。$n$個の複素数からなる組$z(n)=(z_1,z_2,z_3,……z_n)$について、$z(n)$の要素からの異なる$i$個の選び方全てについてそれら(選んだ$i$個の要素)の総積を求め、それら(全ての選び方)の総和を$S(z(n),i)$とします。ある組$z(2024)$が存在して$$S(z(2024),1)=S(z(2024),2)=S(z(2024),3)=……S(z(2024),2022)=0,S(z(2024),2024)=-2$$を満たすとき、$$(z_1)^{2024}+(z_2)^{2024}+(z_3)^{2024}+……+(z_{2024})^{2024}$$の値は実数になるのでそれを計算して答えてください。

解答形式

値を1行目に半角で入力してください。