全問題一覧

カテゴリ
以上
以下

自作問題5

iwashi 自動ジャッジ 難易度:
11月前

4

問題文

実数$x$は以下の条件をすべて満たす。

  • $x$は有理数であり整数でない。
  • $x$は$10$より大きい。
  • $x$を既約分数で表したとき、分母は$20$であり分子は$17$の倍数である。
  • $x-10$の小数点第一位を四捨五入した値と$\sqrt{x}$の小数点第一位を四捨五入した値は等しい。

このような$x$全てについて、$20x$の総和を求めよ。

100G

MrKOTAKE 自動ジャッジ 難易度:
11月前

15

問題文

中心が$O$の円と線分$AB$の二つの交点のうち$A$から近い順に$C,D$とすると
$BO=11,CO=7,AC=CD=DB$ であった.
このとき三角形$ABO$の面積の$2$乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

格ゲー大会

YoneSauce 自動ジャッジ 難易度:
11月前

9

問題文

$A$ さんを含む $10$ 人の選手がゲームの格ゲー大会総当たり形式で行いました.
 $A$ さん以外の $9$ 人の選手は以下の条件を満たしているとき, $A$ さんの勝利した回数としてあり得るものの総和を求めてください.
 しかし,引き分けは考えないものとします.

  • $9$ 勝 $0$ 敗の選手がちょうど $1$ 人いる.
  • $7$ 勝 $2$ 敗の選手がちょうど $1$ 人いる.
  • $6$ 勝 $3$ 敗の選手がちょうど $3$ 人いる.
  • $2$ 勝 $7$ 敗の選手がちょうど $3$ 人いる.
  • $0$ 勝 $9$ 敗の選手がちょうど $1$ 人いる.

解答形式

非負整数を半角数字で答えてください.

OMC不採用問題2

sta_kun 自動ジャッジ 難易度:
11月前

12

問題文

$b−a$ が $3$ の倍数で,$a+b+c=2024$ を満たす非負整数の組 $(a,b,c)$ すべてについて,
$$\dfrac{2024!}{a!b!c!}×3^a×3^b×4^c$$
を足し合せた値を $S$ とします.$S$ の各桁の和を求めてください.

解答形式

半角数字で解答してください.
不備等あれば教えて下さい.

Combination

Weskdohn 自動ジャッジ 難易度:
11月前

9

問題文

$X$($0<X<2025$)個の玉から$Y$($0<Y<2025$)個を同時に取り出す操作を考える.
この操作が成り立つ$X,Y$について,玉の取り出し方の総和を求めなさい.

但しボールは互いに区別できるものとする.

解答形式

答えは$a^b+c(a,b,c∈ℤ)$通りと書けます.$a,b,c$として様々なものがありますが,
$a+b+c=Z(Z∈ℤ ,Z>0)$について$MIN(Z)$の値を求めて下さい.

追記:8/6日問題文の訂正を行いました.もし,もとの問題文のせいでミスしたという方がいましたら,大変申し訳ありません。

不採用幾何

sdzzz 自動ジャッジ 難易度:
11月前

10

問題文

三角形 $ABC$ があり,外心を $O$ とした時以下が成り立ちました.
$$
AB+AC=2BC,\quad AB\times AC=24,\quad AO=5
$$
この時,三角形 $ABC$ の内接円の半径の値を求めてください.ただし求める値は互いに素な正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ の値を解答してください.

解答形式

半角数字で入力してください.

200G

MrKOTAKE 自動ジャッジ 難易度:
11月前

12

問題文

$AB=5, AC=7$の三角形$ABC$があり重心を$G$,内心を$I$とすると$BC //GI $であった. このとき三角形$ABC$の面積の$2$乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

算数オリンピック風味の幾何

miq_39 自動ジャッジ 難易度:
11月前

10

問題文

四角形 $ABCD$ があり,以下を満たしています:

$$
\angle B + \angle C = 120^{\circ} , \angle D = \angle B + 30^{\circ} , AB = CD = 7 , BC = 13 .
$$

このとき,辺 $AD$ の長さの $2$ 乗を解答してください.

解答形式

半角数字で解答してください.

正六角形:1→2→3→4

kusu394 自動ジャッジ 難易度:
11月前

2

問題文

正角形 $ABCDEF$ について,辺 $AB,BC,DE, EF$ 上にそれぞれ点 $P,Q,R,S$ があり,
$$AP =1,\ \ BQ =2,\ \ DR =3,\ \ ES =4$$ が成り立ちます.四角形 $PQRS$ の面積が $64\sqrt3$ のとき,正六角形の一辺の長さは正の整数 $a,b$ を用いて $a + \sqrt b$ と表せるので $a+b$ の値を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

11月前

12

問題文

正の実数$x,y,z$が$$(x+1)y^2=(x−1)z^2=\frac{3}{5}xyz$$
を満たすとき、
$$\frac{z}{y}=?$$

解答形式

例)?に入る数値を入力してください。

n+1回目で佐えない分散

cipher703516247 自動ジャッジ 難易度:
11月前

4

問題文

cipher君は98%の確率で佐る。いまからcipher君が佐るのを失敗するまでに佐る回数をPとする。
Pの分散を求めろ

解答形式

非負整数で求めろ

今日の因数分解 第60回

Lamenta 自動ジャッジ 難易度:
11月前

22

問題文

$\:2024≧a>b>c≧1\:$なる正整数の組$\:(a,b,c)\:$であって、$x^a+x^b+x^c+1\:$が$\:(x+1)\:$を因数に持つようなものは何通りあるか解答してください。

解答形式

半角数字で解答してください。