公開日時: 2025年4月26日9:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
SKG学院の文化祭では,$1$から$10$の目が一つずつ書かれた十面体の歪んだダイスを配布しています.
このダイス$10$個に$1$から$10$までの番号をつけることにしました.
ここで以下のような事実が分かっています.
また$1≦n≦10$を満たす任意の整数$n$について,番号$s$がついたダイスを一回振って$n$の目が出る確率を$a_{n^s}$と書くことにします.
・$a_{1^s}:a_{2^s}…a_{9^s}:a_{10^s}=1^s:2^s\cdots9^s:10^s$を満たす.
この$10$個のダイスを同時に一回振る時,出目の積の期待値を求めて下さい.
半角数字で入力して下さい.
公開日時: 2025年4月26日9:00 / ジャンル: 数学 / カテゴリ: 算数 / 難易度: / ジャッジ形式: 採点者ジャッジ
聖くんと光くんはトランプゲームを行うことにした.
なお$1$ から $13$ までの数字が書かれたトランプをそれぞれ四枚ずつ用いる.
ルールは以下の通り.
- 聖くんはトランプを $1$ 枚から$3$ 枚まで引くことができる.
- 光くんは幾つかの質問をして,聖くんが引いたトランプに書かれた数字を回答する.
光くん「書かれた数字の和を教えて」
聖くん「$31$ だよ」
光くん「うーん難しいな……なにかヒントくれない?」
聖くん「トランプに書かれた数字の積を求めたら、各位の和は $2$ になったよ」
光くんが引いたトランプの目として考えられるものを全て求めなさい。
答えが$1,2,4$の場合は$(1,2,4)$と入力して下さい.(小さい順に)
公開日時: 2025年4月26日9:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
SKG学院では$5×5$のマス目を使い,とあるゲームが行われている.
ゲームのルールは以下の通り.
・お客さんと生徒がじゃんけんをする.勝った方が先手,負けた方が後手となる.
この時あいこは考えないものとする.
・先手は黒の碁石,後手は白の碁石をマスの上に交互に置いていく.
・同じマスには碁石は一つまでしか置けない.
・マス目が全て埋まった時,各行について次の条件を満たすものを特別な行と呼び,その個数を数える.
特別な辺:ある行の$5$マスを見た時お客さんが置いた碁石の個数が偶数個であるもの.
・特別な行の個数が偶数であればお客さんの勝ち,奇数であれば生徒の勝ちとなる.
お客さんが勝つ確率を$A$,お客さんが勝つ時の碁石の置き方の総数を$B$とする.
$A×B$の値を求めなさい.
但し回転して重なるような碁石の置き方は区別しないとする.
半角数字で入力して下さい.
公開日時: 2025年4月26日9:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 採点者ジャッジ
今年でSKG学院の文化祭は第$66$回を迎えます.また今年度は $2025$ 年です.
さて$0,2,5$ のみを用いた数式の内,答えが $66$ となるようなものを一つ求めてください.
但し,演算子($+, -, \times$ など)は自由に用いて良いものとします.
一例:
$\left( (2 \times 0 \times 2 \times 5)! + (2 \times 0 \times 2 \times 5)! \right) \times \left( 2^2 + 0^2 + 2^2 + 5^2 \right) = (1+1) \times 33 = 66$
式と答えを省略無しで入力して下さい.上の例とは違うものをお願いします.
公開日時: 2025年4月26日9:00 / ジャンル: 謎解き / カテゴリ: / 難易度: / ジャッジ形式: 自動ジャッジ
NK君は誕生日を迎えました.
そのことを友達のGW君に伝えようと思っています.
そのまま言っては面白くないので,日付についてこう述べることにしました.
「僕の誕生日は,月と日をくっつけると$179$の倍数になるよ」
NK君の誕生日を求めて下さい.
半角数字で値を入力して下さい(/も忘れずに)
幾つか例を置いておきます.
1月1日⇒1/1
12月1日⇒12/1
1月12日⇒1/12
12月12日⇒12/12
公開日時: 2025年4月26日9:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
接点・共通領域を持たない円$A,B$があり,これらの中心を通る直線$l$との交点を$P,Q,R,S$とします.($P≠Q≠R≠S$)
但し$P,Q$が$A$の円周上,$R,S$が$B$の円周上にあり,$P,Q,R,S$の順に並ぶとします.
また$PS,QR$の長さをそれぞれ$a,b$と置きます.
この時$A,B$の共通内接線の長さが$2025$となるような$(a,b)$の組として考えられるものは何通りありますか.
半角数字で解答して下さい.
公開日時: 2025年4月25日4:06 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
ある町 $A$ がある. 町 $A$ にはいくつかの家と$,$それらを双方向に結ぶいくつかの道路からなる. さらに$,$ 以下の条件を満たす.
・家は $2025$ 個からなり$,$ $1$$,$ $2$$,$ ⋯$,$ $2025$の番号がつけられている.
・道路は $2024$ 本ある.
・どの家からどの家へまでもいくつかの道路を通って移動可能である.
また$,$ 家 $i$ の 便利さ を以下のように定義します. ( $i$ の番号が付けられている家を家 $i$ と呼びます. )
$$
i \times (家iからちょうど1本の道路を通って移動可能な家の数)
$$
さらに$,$ 町 $A$ の スコア を$,$ すべての家の 便利さ の総和と定義します.
道路の結ばれ方としてありうるものすべてについて$,$ 町 $A$ の スコア の総和の正の約数の個数を求めてください.
スコア の総和の正の約数の個数を求め$,$ 1行に半角で解答してください.
必要であれば電卓や素数表を用いてください.