全問題一覧

カテゴリ
以上
以下

Kinmokusei

公開日時: 2022年9月11日0:18 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

図の条件の下で、ピンクで示した線分の長さを求めてください。

解答形式

互いに素な正整数 $a,b$ を用いて $x=\dfrac{a}{b}$ と表せるので $a+b$ の値を解答してください。

nemuri_neco

公開日時: 2022年9月7日22:25 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ

整数問題 数A

問題文

$\frac{7p+q}{7q+p}$が整数となるような異なる素数$(p,q)$の組み合わせを全て求めよ。

解答形式

$p$と$q$を横につなげて解答してください。解答が2つ以上ある場合は$p$の小さい順に改行して記入してください。$p$が等しい解答が2つ以上あった場合、$q$の小さい順に改行して記入してください。

解答例)$(p,q)=(2,11),(7,17),(7,29)$のとき、以下のように解答します。
211
717
729

lyala

公開日時: 2022年9月5日22:30 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$1,2...nの数字を次の条件を満たすように一列に並べる方法の数をa_nとする。$
$条件:k(k=1,2,...n-1)について右隣の数がk+1でない。$
$このとき、a_7を求めよ。$

解答形式

半角数字で回答してください。
4/19追記この問題は、改善点があるので、工事予定です。

tb_lb

公開日時: 2022年9月4日23:20 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ

初等幾何 長さ

【補助線主体の図形問題 #070】
 今週は、僕の出題では珍しく軌跡の問題です。初等幾何によらない解法も存在しますが、いつも通り補助線でも突破可能です。難易度評価は補助線による解法を想定しており、それ以外の解法が思いついた方にはぐっと簡単に見えるかもしれません。お好みの解法でお楽しみください!

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

yorunojunin_i

公開日時: 2022年9月2日1:54 / ジャンル: 謎解き / カテゴリ: / 難易度: / ジャッジ形式: 自動ジャッジ

漢字 四字熟語

下に書かれた四字熟語のうち、他の四字熟語とは異なる、ある共通点を持った2つの四字熟語がある。その2つの四字熟語とは?
なお、その2つの四字熟語は同じ漢字が含まれていないことに注意。

・千載一遇 ・質疑応答
・小春日和 ・以心伝心
・一攫千金 ・柳暗花明
・春夏秋冬 ・百鬼夜行


解答の形式
2つの四字熟語をあいうえお順で続けて入力する。
例)
一攫千金千載一遇

u_ki

公開日時: 2022年8月31日15:24 / ジャンル: 謎解き / カテゴリ: / 難易度: / ジャッジ形式: 自動ジャッジ

dot

解読してみてください。

u_ki

公開日時: 2022年8月31日14:33 / ジャンル: 謎解き / カテゴリ: / 難易度: / ジャッジ形式: 採点者ジャッジ


u_ki

公開日時: 2022年8月31日13:56 / ジャンル: 謎解き / カテゴリ: / 難易度: / ジャッジ形式: ジャッジなし


visit the URL below
https://me-qr.com/3xlNBom

lyala

公開日時: 2022年8月29日8:21 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$p$を$5$以上の素数とする。$1$から$p-1$までの整数が書かれたカードが$1$枚ずつある。
これらから$3$枚を同時に選び、それらに書かれていた数を$a,b,c$とし、$ab+bc+ca$が$p$の倍数となる確率を求めよ。

解答形式

半角英数字で分子を一行目に、分母を二行目に展開して完全に約分された形で回答してください。
(例)$\frac{p}{p^2-4}$と回答する場合
p
p^2-4
9/1追記解説を公開しました。

tb_lb

公開日時: 2022年8月28日22:44 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ

初等幾何 長さ

【補助線主体の図形問題 #069】
 今週の図形問題は補助線の威力が味わえる1題となっています。腕に覚えのある方は暗算で、そこまでは……という方も紙に思いっきり補助線を書き込みながらお楽しみください。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

CentiMentallyTouhu

公開日時: 2022年8月28日0:13 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 採点者ジャッジ

中学数学 高校数学 中一 中二 中三 高一 高二 高三 階乗 整数問題

問題文

2160nがある階乗と等しくなるような自然数nのうち、2番目に小さいもの、3番目に小さいものをそれぞれ求めよ。

解答形式

例えば、5,10のように、半角数字,半角数字と、左から2番目に小さいもの、3番目に小さいものと並べて記入してください。

Kinmokusei

公開日時: 2022年8月28日0:11 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

図の条件の下で、線分 $OO'$ の長さを求めてください。

解答形式

$OO'^2$ は正整数になるので、その値を半角数字で解答してください。