全問題一覧

カテゴリ
以上
以下

7777777

公開日時: 2024年5月8日23:03 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 採点者ジャッジ

整数 高校数学 数学

問題文

$2024!$の約数の和は$2025$の倍数であることを示せ。

y

公開日時: 2024年4月6日8:49 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


$$
次の因数分解した形はどれか。\\
ab+bc+{a}^{2}{b}^{2}+a{b}^{2}c
$$
$$
(1){ab}^{2}(bc+1)
(2){bc}^{2}(ab+1)
(3)2ab(bc+1)
(4)(ab+1)(ab+bc)
$$

iwashi

公開日時: 2024年5月7日18:20 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$$
F(t) = \int_{0}^{1} \frac{\left|\sin tx\cos tx \right|}{\left(1+\sin ^{2}tx \right)\left(1+\cos ^{2}tx \right)\left(1+\tan ^{2}tx \right)}dx
$$とする。極限値$\displaystyle \lim_{t\to\infty} e^{n\pi F(t)}$が整数になるような正整数$n$のうち最小のものを求めよ。また、そのときの極限値を求めよ。

解答形式

1行目に$n$の値を、2行目に極限値を半角英数字で解答してください。

gyakugirepanda

公開日時: 2021年11月6日13:47 / ジャンル: 謎解き / カテゴリ: / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

問一
このもんだいぶんはめたこ
うぞうがちになります。ぜ
んたいのかたちがじゅうに
かけるじゅうにのせいほう
けいになっていてこのもん
だいぶんをたてかけるよこ
をはちかけるじゅうはち、
きゅうかけるじゅうろくに
それぞれしなおし、「ち」
のしたのもじを、つぎのも
んだいのきごうにこのぶん
のとおったじゅんにはめる

問二
覆面算です。同じひらがなには同じ数字があてはまり、異なるひらがなに同じ数字は入りません。ただし、「」内の言葉に同じひらがなはない。(少しずれてしまっているのは申し訳ないです。)

・    F D     B J  
    ×Iう     ×め
  ――――――  ――――
    H G う   「   」
   ほ け C      ↑ 出来たひらがな3文字を次の問題の「」にいれろ
  ―――――
  ほ A E う

問三
同じ矢印は同じ行動をする。五十音表を見ながらやることをおすすめします。
五十音表      わらやまはなたさかあ
          をり みひにちしきい
          んるゆむふぬつすくう
           れ めへねてせけえ
           ろよもほのとそこお

「」→⇒⇒⇒ひにち  「」⇨→→➤ちいき   きすう☞⇒➤➤につけ
さかな➤→⇨かたな   かおす⇒➤→⇨こたつ  こけい➤➤→けいと
はのい☞→のうは のとき、

「」⇨→☞☞⇒⇒→➤➤➤➤➤→➤→___

ラスト謎

答えは、正方形で「___」にすると?

解答形式

ひらがな二文字で入力してください。

fusshi

公開日時: 2020年9月12日18:00 / ジャンル: 数学 / カテゴリ: 大学数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

1
下の行列$A$に対して$f\colon \mathbb{R}^{6} \to \mathbb{R}$を$f(x)={}^{t}xAx$で定義する。${}^{t}x$は$x$の転置である。
$f$が原点で最大最小をとらない$a$の範囲を求めよ。

$$
A=\begin{pmatrix}
a& -3 & -a & 2 & 9 & a\\
-3 & -3 & 1 & 0 & 5 & 1\\
-a& 1 & 4 & 5 & 4 & 7\\
2& 0 & 5 & 1 & a & 1\\
9& 5& 4 & a & -4 & -4\\
a& 1 & 7 & 1 & -4 & a\\
\end{pmatrix}
$$

2
$$
X=\begin{pmatrix}
1& 6 & 0 & -2 & 1 & 0\\
2 & b& 2 & 1 & 4& 3\\
-1& 9 & -3 & 7 & 1 & -1\\
2& -1 & 0 & 1 & 6 & 0\\
-1& -4 & -3 & 2 & b & 2\\
-7& -1 & 1 & -1 & 9 & -3
\end{pmatrix}
$$
が実対角化可能な$b$の範囲を求めよ。

ヒント1は1のヒント、ヒント2-4が2のヒントです。

解答形式

$\displaystyle\frac{\fbox{ア}}{\fbox{イ}}<a<\frac{\fbox{ウ}}{\fbox{エ}}$、$\displaystyle\frac{\fbox{オ}}{\fbox{カ}}<b<\frac{\fbox{キ}}{\fbox{ク}}$
である。$\fbox{ア}$から順に1行ごとに答えよ。
ただし、任意の$a$で成立しないときは
$$
\fbox{ア}=00,\fbox{イ}=00,\fbox{ウ}=00,\fbox{エ}=00
$$
とし、任意の$a$で成立するときは
$$
\fbox{ア}=000,\fbox{イ}=000,\fbox{ウ}=000,\fbox{エ}=000
$$
のように答えてください。$b$も同様です。

Michael

公開日時: 2021年5月14日21:34 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

正$n$角形$A_1,A_2,\cdots,A_n$と,同じ平面上に点$X$があって$$A_1^2= A_2^2+\cdots+A_n^2 $$を満たしている.このような点$X$が存在する最大の自然数$n$を求めよ.

解答形式

$n$の値を半角数字で1行目に入力してください。

gyakugirepanda

公開日時: 2021年11月9日1:39 / ジャンル: 謎解き / カテゴリ: / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

先生はA,B,Cの三人に赤、白、黒の帽子のどれかをかぶせました。同じ色は2つまであります。A,B,Cは自分以外の他の二人の帽子の色を見ることが出来ます。しかし、A,B,Cのうち最大3人の嘘つきがいます。ABCは誰が嘘をついているかしっています。A,B,Cは次の発言をしました。
A「僕がある色だとしたら三色そろうね」
B「僕がある色だとしたら三色そろうね」
C「Aは赤ではなくBは白ではない」
DさんはABCの発言を聞いてABCに質問を出来ました。その結果、ABCは「はい」と答えました。次の内どの質問をすればDはABCの帽子の色がわかるだろうか。また、A,B,Cの帽子の色はそれぞれ何色か。

① Aに「自分の帽子の色がわかりましたか」と聞く。
② Bに「Cは嘘つきですか」と聞く。
③ Cに「嘘つきは二人ですか」と聞く。

1,①のみ 2,②のみ 3,③のみ
4,①と② 5,①と③ 6,②と③

解答形式

半角数字で答え、その次の行にA,B,Cの帽子の色をABCの順に赤はR、白はW、黒はBとして半角英字大文字で答えなさい。ただし、質問の答えが何通りもある場合は行を変えて答えなさい。(ABCの帽子の色の組み合わせは1つに確定します。)
(例)1
   2
   3
   4
   5
   6
   RRR

BlueHawaii

公開日時: 2020年6月10日13:54 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 採点者ジャッジ


問題文

$a=e^{2AX},c=e^{2CX}$(Xは正の定数,A,Cは実数)とする.
$f(x)=-a\log_e(x+c)+X$とする.$y=f(x)$の$y$切片を点P,
$y=f(x)$と点$(0,X)$で接する接線$l$と$y$軸とが成す角を
$\theta\;(\theta\mbox{は}0<\theta<\dfrac{\pi}{2}\mbox{を満たす実数})$,$y=f(x)$の$x$切片を点Qとする.
$\tan\dfrac{\theta}{2}$をネイピア数$e$を用いて表せ.
また,点Qの$x$座標が正の無限大に大きくなるとき,$\tan\dfrac{\theta}{2}$の値の極限値を求めよ.

解答形式

記述式解答を求む.(直感で答えが出る可能性があるので)

u_ki

公開日時: 2022年8月31日14:33 / ジャンル: 謎解き / カテゴリ: / 難易度: / ジャッジ形式: 採点者ジャッジ


u_ki

公開日時: 2022年8月31日13:56 / ジャンル: 謎解き / カテゴリ: / 難易度: / ジャッジ形式: ジャッジなし


visit the URL below
https://me-qr.com/3xlNBom

kusu394

公開日時: 2024年5月4日0:04 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

正八角形 $P_1P_2P_3P_4P_5P_6P_7P_8$があり, 各頂点に $0,1,2$ のいずれかの数字を $1$ つずつ書き込みます.
頂点 $P_i$ に書かれた数字のことを, $f(P_i)$ で表すこととします.

正八角形の頂点 $P_i$ が"孤独な頂点"であるとは, $f(P_i) \neq f(P_{i-1})$ かつ $f(P_i) \neq f(P_{i+1})$ を満たすことと定義します.
ただし, 便宜上 $f(P_0)=f(P_8),\ f(P_9)=f(P_1)$ であるとします.
また, 正八角形の"孤独な頂点"の個数を"孤独度"と呼ぶことにします.

正八角形の頂点に数字を書き込む方法は $3^8$ 通りありますが, それらすべてについて"孤独度"の総和を求めてください.

例:
$$(f(P_1), f(P_2), f(P_3), f(P_4),f(P_5), f(P_6), f(P_7), f(P_8)) = (0,1,2,1,2,1,2,0)$$ のときは $P_2,...,P_7$ が"孤独な頂点"となるので, この数字の書き込み方の"孤独度"は $6$ となります.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

kusu394

公開日時: 2024年5月3日23:14 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

四角形 $ABCD$ と三角形 $XYZ$ は以下の条件を満たします.
$$AD=505, \hspace{1pc} BC=507, \hspace{1pc} AB=CD, \hspace{1pc} \angle ABC=60^\circ, \hspace{1pc} \angle DCB=80^\circ$$ $$YZ=1, \hspace{1pc} XY=XZ, \hspace{1pc} \angle YXZ=40^\circ$$ このとき, 四角形 $ABCD$ の面積は三角形 $XYZ$ の面積の何倍ですか.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

追記:
若干日本語がおかしかったため編集しました. 解答には影響はないと思われます.
一応ヒント2に元の問題文を残してあります. 以上, よろしくお願いします.