△ABC とその外接円 O があり、OA = 3、AB = 4 である。半直線 AO と線分 BC が交わるように点 C をとり、その交点を D とする。BD : DC = 2 : 1 となるときの OD の長さを全て求めなさい。ただし、点 C は弧 AB 上にないものとする。
答えはある整数 $a, b, c$ を用いて$$\rm{OD} = \frac{b \pm \sqrt{c}}{a}$$と表せるので、一行目に $a$、二行目に $b$、三行目に $c$ を半角で入力してください。
三角形 $ABC$ の辺 $AB , AC$ (端点を除く)上にそれぞれ点 $P , Q$ があり,直線 $BC , PQ$ は,半直線 $BC$ 上の点 $R$ で交わっています.また,線分 $BC , PQ$ 上にそれぞれ点 $M , N$ があり, $\dfrac{BM}{MC} = \dfrac{PN}{NQ} = \dfrac{BR}{RC}$ を満たしています.いま,直線 $AN$ と $\triangle ABC$ の外接円の交点のうち,$A$ でない方を $X$ としたところ,$\angle MNR = \angle MXR = 90^{\circ}$,$\angle BXM = 63^{\circ}$ がそれぞれ成り立ちました.このとき,$\angle BAC$ の大きさを度数法で求めてください.
半角数字で解答してください.
円 $\omega$ 上に相異なる $2$ 点 $A,B$ がある.ただし,弦 $AB$ は $\omega$ の直径ではない.$A,B$ における $\omega$ の接線をそれぞれ $l,m$ とする.劣弧 $AB$ 上(端点を除く)に点 $P$ をとり,$P$ を通り $l$ に平行な直線と $\omega$ の交点であって,$P$ でないものを $C$ とし,$P$ を通り $m$ に平行な直線と $\omega$ の交点であって,$P$ でないものを $D$ とする.$l$ と直線 $BC$ の交点を $E$,$m$ と線分 $AD$ の交点を $F$ とする.また,線分 $AF$ と線分 $BE$ の交点を $X$,線分 $CF$ と線分 $DE$ の交点を $Y$ とする.$AB=\sqrt{69}$,$AC=3$,$BD=6$ がそれぞれ成り立っているとき,線分 $XY$ の長さは,互いに素な正整数 $a,c$ および平方因子を持たない $2$ 以上の整数 $b$ を用いて $\dfrac{a\sqrt{b}}{c}$ と表されるので,$a+b+c$ の値を求めよ.
半角数字で解答してください.
$AB=AC=3$ なる $\triangle ABC$ がある.辺 $BC$ の $C$ 側の延長上に,$AD=5$ なる点 $D$ をとる.$\triangle ABD$ の外接円において,$B$ を含まない弧 $AD$ 上に,$DE=4$ なる点 $E$ をとる.直線 $CE$ と $\triangle ABD$ の外接円との交点のうち,$E$ でないものを $F$ としたら,$EF=\dfrac{48}{\sqrt{91}}$ となった.このとき,
$$
BF=\dfrac{a}{b}
$$
である.ただし,$a,b$ は互いに素な自然数である.
$\boldsymbol{\underline{a^{2}+b^{2}}}$ の値を求めよ.
半角数字で解答してください.