全問題一覧

カテゴリ
以上
以下

tb_lb

公開日時: 2024年1月14日21:51 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ

初等幾何 長さ

【補助線主体の図形問題 #124】
 年始は西暦を織り込んだ数学・パズルの問題をお送りしてきましたが、また日曜夜通例の「補助線主体の図形問題」に戻ります。変わらぬご愛顧ををどうかよろしくお願いします。
 今回は、補助線を使えば計算量減を図れ、補助線を使わないと面倒な計算を強いられるという問題を用意しました。補助線解法を期待しているのですが、力技で解くのもアリです。お好きなようにお楽しみください。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

miq

公開日時: 2024年1月8日23:27 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ

初等幾何

問題文

$AB=5,AC=9$ なる三角形 $ABC$ があり,その外接円を $\Gamma$ とします.辺 $BC$ の中点を $D$ とすると,$B$ における $\Gamma$ の接線と半直線 $DA$ が点 $E$ で交わりました.また,辺 $AC$ 上の点 $F$ が $\angle CDF=\angle BEA$ をみたしています.$DF=\dfrac{10}{3}$ のとき,線分 $AE$ の長さは互いに素な正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ の値を求めてください.

解答形式

半角数字で解答してください。

shoko_math

公開日時: 2024年1月1日19:28 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ

初等幾何 競技数学

問題文

鋭角三角形 $ABC$ に対し,重心と垂心をそれぞれ $G,H$ とし,直線 $GH$ と辺 $AB,AC$ との交点をそれぞれ $D,E$ とし,直線 $AH$ と辺 $BC$ の交点を $F$ としたところ,$DH:HG=4:3,BF:FC=3:7$ となりました.
${AD}^2:{AE}^2$ は互いに素な正の整数 $a,b$ を用いて $a:b$ と表されるので,$a+b$ の値を求めてください.

解答形式

半角数字で解答してください.

shoko_math

公開日時: 2024年1月1日19:27 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ

初等幾何 競技数学

問題文

三角形 $ABC$ において,$A,B,C$ から対辺に下ろした垂線の足を $D,E,F$ とし,三角形 $ABC$ の垂心を $H$ としたところ,$DE=9,DF=8,DH=7$ となりました.
このとき,$AH$ の長さは互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表されるので,$a+b$ の値を解答してください.

解答形式

半角数字で解答してください.

shoko_math

公開日時: 2024年1月1日19:27 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ

初等幾何 競技数学

問題文

へこみのない四角形 $ABCD$ の外側に正方形 $ABFE,BCHG,CDJI,DALK$ を描いたところ,$\triangle ALE=16,\triangle BFG=9,\triangle CHI=36$ となりました.このとき,$\triangle DJK$ の面積を求めて下さい.

解答形式

半角数字で解答してください.

shoko_math

公開日時: 2024年1月1日19:27 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ

初等幾何 競技数学

問題文

円に内接する $8$ 角形 $ABCDEFGH$ が $\angle{A}=121^{\circ},\angle{B}=122^{\circ},\angle{C}=123^{\circ},\angle{D}=124^{\circ},\angle{E}=125^{\circ},\angle{F}=126^{\circ}$ を満たすとき,$\angle{G}$ の大きさを度数法で解答してください.

解答形式

半角数字で解答してください.

shoko_math

公開日時: 2024年1月1日19:27 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ

初等幾何 競技数学

問題文

$AB=20,CD=23,AD=12,BC=31$ を満たす四角形 $ABCD$ について,三角形 $ABD$ の内心を $I_1$ とし,三角形 $BCD$ の内心を $I_2$ とします.
$I_1I_2$ と $BD$ の交点を $X$ とすると $DX=\dfrac{12}{31}$ となったとき,$BX$ の長さは互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ の値を解答してください.

解答形式

半角数字で解答してください.

peparoni

公開日時: 2024年1月1日0:02 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ

初等幾何

問題文

下図において,黒線の図形は正十五角形であり,青線の長さは $8$ ,緑線の長さは $6\sqrt{5} - 2 + 2\sqrt{6}\sqrt{5 - \sqrt{5}}$ です.
このとき,赤線の長さは,正整数 $a,b,c,d,e,f,g$ (ただし,$c,d,e,g$ は平方因子を持たない)を用いて $a - b\sqrt{c} + (\sqrt{d} + \sqrt{e})\sqrt{f-\sqrt{g}}$ と表せるので,積 $abcdefg$ の値を解答してください.

解答形式

余分な空白や改行を入れずに,半角数字のみを用いて解答してください.

tb_lb

公開日時: 2023年12月31日21:42 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ

初等幾何 角度

【補助線主体の図形問題 #123】
 ご無沙汰ぶりの&2023年最後の図形問題です。今年も僕の出題を解いていただきありがとうございました。来年も引き続きよろしくお願いします。よいお年を!

解答形式

${
\renewcommand\deg{{}^{\circ}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。角度は弧度法ではなく度数法で表すものとします。
(例) $12\deg$ → $\color{blue}{12.00}$  $\frac{360}{7}^{\circ}$ → $\color{blue}{51.43}$
 入力を一意に定めるための処置です。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

告知

${}$ 2024年も年始1月1日~7日に西暦を織り込んだ数学・パズルの問題をお送りする予定です。今回も虫食算からお目見えしようと思っています。どうぞよろしくお願いします!

natsuneko

公開日時: 2023年12月31日7:00 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ

初等幾何

問題文

鋭角三角形 $ABC$ について, 垂心を $H$, 内心を $I$, 外心を $O$ とし, また, $C$ から $AB$ に下した垂線の足を $D$, $B$ から $AC$ に下した垂線の足を $E$, $A$ から $BC$ に下した垂線の足を $F$ とします. すると, $H,I,O$ は相異なり, かつ $AH=AO=10,HI:HO=41:80$ が成立しました. このとき, $DF+EF$ は互いに素な正整数 $a,b$ と平方因子を持たない正整数 $c$ によって, $\cfrac{b \sqrt{c}}{a}​​$ と表されるため, $a+b+c$ の値を解答して下さい.

解答形式

半角整数値で解答して下さい.

miq

公開日時: 2023年11月22日23:27 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ

初等幾何 悪問

問題文

円 $\omega$ 上に相異なる $2$ 点 $A,B$ がある.ただし,弦 $AB$ は $\omega$ の直径ではない.$A,B$ における $\omega$ の接線をそれぞれ $l,m$ とする.劣弧 $AB$ 上(端点を除く)に点 $P$ をとり,$P$ を通り $l$ に平行な直線と $\omega$ の交点であって,$P$ でないものを $C$ とし,$P$ を通り $m$ に平行な直線と $\omega$ の交点であって,$P$ でないものを $D$ とする.$l$ と直線 $BC$ の交点を $E$,$m$ と線分 $AD$ の交点を $F$ とする.また,線分 $AF$ と線分 $BE$ の交点を $X$,線分 $CF$ と線分 $DE$ の交点を $Y$ とする.$AB=\sqrt{69}$,$AC=3$,$BD=6$ がそれぞれ成り立っているとき,線分 $XY$ の長さは,互いに素な正整数 $a,c$ および平方因子を持たない $2$ 以上の整数 $b$ を用いて $\dfrac{a\sqrt{b}}{c}$ と表されるので,$a+b+c$ の値を求めよ.

解答形式

半角数字で解答してください.

MARTH

公開日時: 2023年11月12日7:13 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ

初等幾何

直方体 $ABCD-EFGH$があり, $AB=\sqrt{2},AD=2023\sqrt{2},AE=2024\sqrt{2}$ です. 三角形 $BDE$ の面積を求めてください.