数学の問題一覧

カテゴリ
以上
以下

simasima

公開日時: 2024年4月1日9:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

これまでのあらすじ (読まなくてもこの問題を解くことが出来ます)
https://onlinemathcontest.com/contests/omc032/tasks/12
https://onlinemathcontest.com/contests/omc032/tasks/15
勇者・しおしおの飛ばされた異世界では、将棋に草将と言う駒が追加されていました。
この駒は、以下に示された $6$ マスのいずれかに $1$ 手で移動できます。

この異世界での将棋は盤面がデカすぎてクソゲーだったので、しおしおは別の遊びを考えました。

白と黒の $2$ 色で塗られた $9×9$ の盤面について、良い盤面を以下のように定義します。

最下段の黒いマスから上手く選んで草将を置くと黒いマスの上だけを草将が移動して最上段の黒いマスのどれかに行く事が出来る。

以下に具体例を示します。
①の盤面では右から三列目に草将を置き矢印に沿って草将を移動させることで左から二列目の最上段の黒マスに到達できるので良い盤面です。
②の盤面も矢印のように草将を動かせるので同様に良い盤面です。
③の盤面ではどのようにしても最上段の黒いマスにたどり着けないので良い盤面ではありません。
④の盤面はそもそも最下段に黒いマスが無いので良い盤面ではありません。
⑤の盤面も最上段に黒いマスが無いので良い盤面ではありません。

全てのマスが白い盤面に対して、白マスをランダムに $1$ つ選んで黒マスに変更するという操作を良い盤面になるまで繰り返す時、最終的な盤面の黒マスの数の期待値を求めてください。ただし、答えは互いに素な正整数 $a,b$ を用いて $\frac{a}{b}$ と表せるので$a+b$を解答してください。

解答形式

半角で正整数を解答してください

simasima

公開日時: 2024年4月1日9:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

正整数 $n$ について $d(n)$ で $n$ の正の約数の個数を表すとき、
$$\sum^{100000}_{k=1}d(k)$$
の値を求めよ。

以下は体育会系数学部のある部員がこの問題に挑戦した記録である。


とりあえず1から順に約数の個数を数えていくぞ!
$d(1)=1$
$d(2)=2$
$d(3)=2$
$d(4)=3$
...
$d(100)=9$
これを $100000$ までやるのは大変だな...
もしかして主客転倒すれば
$$\sum^{100000}_{k=1} \left [\frac{100000}{k}\right ]$$
を計算すればいいのでは?やってみよう!
$\sum^{1}_{k=1} [\frac{100000}{k} ] =100000$

$\sum^{2}_{k=1} [\frac{100000}{k}] =150000$

$\sum^{3}_{k=1} [\frac{100000}{k}] =183333$

...

$\sum^{100}_{k=1} [\frac{100000}{k} ] =518692$

この調子でどんどん計算していくぞ!

...

$\sum^{1000}_{k=1} [\frac{100000}{k} ] =748058$

流石に疲れてきたな...

...

$\sum^{2024}_{k=1} [\frac{100000}{k} ] = 818025$

意識が朦朧としてきた...


その後部員は救急車で病院に搬送された。
部員の途中計算は間違っていないようだ。部員の意思を継いでこの問題の答えを出してほしい。

解答形式

非負整数で解答してください。

simasima

公開日時: 2024年4月1日9:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

実数上の二項演算である「見せ算」を次のように定義します(今回は見せ算の中でも初等的な性質のみ扱います。)
$$
x \spadesuit y= \begin{cases} y & (x<y) \\ 0 & (x= y)\\ x & (x> y) \end{cases}
$$
この見せ算では結合法則が成り立たたず、計算順序により眼(答え)が変わる事があります。例えば、$((4 \spadesuit 4) \spadesuit 3)=3$ ですが、$(4 \spadesuit (4 \spadesuit 3))=0$ です。
数列 $(a_1,a_2,...,a_n)$ であって、$a_1\spadesuit a_2\spadesuit ....\spadesuit a_n$ をどんな順序で計算しても眼(答え)が変わらない数列を 全不変眼数列 と呼びます。
例えば、$(0,4,0,1)$ はどのような順序で計算しても眼が $4$ になるので 全不変眼数列 ですが、$(1,2,2,1)$ は $(((1 \spadesuit 2) \spadesuit 2) \spadesuit 1)=1$、 $(1 \spadesuit ((2 \spadesuit 2) \spadesuit 1))=0$ であるため 全不変眼数列 ではありません。
長さが $24$ で、$0,1,2,3$ を要素としてそれぞれ $6$ つずつ持つような 全不変眼数列 はいくつありますか?

解答形式

半角で解答してください

imabc

公開日時: 2024年3月30日18:29 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ

幾何

問題文

https://mathlog.info/articles/Lf8QaKPklfv156yuq309 問題13)
 三角形$ABC$において外接円,内接円,角$A$内の傍接円の半径をそれぞれ$R,r,r_A$とすると

$$R=14,r=6,r_A=19$$

が成り立ちました.このとき$BC$の長さの二乗を求めてください.

解答形式

答えを入力してください.

imabc

公開日時: 2024年3月30日18:18 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

以下の条件を全て満たす $20001$ 個の整数の組 $(a_0,a_1,…,a_{20000})$ を 階段状な組 と定義します.

  • $a_0=a_{20000}=0$ .
  • $k=0,1,…,19999$ について $|a_{k+1}-a_k|=1$ .

また,階段状な組 $A=(a_0,a_1,…,a_{20000})$ に対して スコア $S(A)$ を以下のように定めます.

  • 以下の条件を全て満たす $1001$ 個の整数の組 $(x_0,x_1,…,x_{1000})$ の個数.
    $\quad$ ・ $k=0,1,…1000$ について $x_k$ は $0$ 以上 $20000$ 以下の 偶数
    $\quad$ ・ $k=0,1,…999$ について $x_k\lt x_{k+1}$ .
    $\quad$ ・ $a_{x_{1000}}=0$ .

階段状な組全てに対してスコア $S(A)$ の総和を求め,その値が $2$ で割り切れる最大の回数を求めてください.

解答形式

答えを入力してください.

imabc

公開日時: 2024年3月30日18:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ

不等式

問題文

正の実数 $x,y,z$ が $xyz=x+y+z+2$ を満たしています.このとき, $x+4y+9z$ の最小値を求めてください.

解答形式

答えを入力してください.

contrail

公開日時: 2024年3月30日14:59 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

三角柱 $ABC-DEF$ があり,いま点 $P$ は頂点 $A$ にいます.点 $P$ が隣り合う頂点に移動する操作を $12$ 回繰り返して点 $A$ に戻るように移動する方法すべてに対して,上下に移動する回数の総和を求めてください.

ただし上下に移動するとは,頂点 $A,B,C$ のいずれから頂点 $D,E,F$ のいずれかに移動すること,またその逆を意味します.

解答形式

半角数字で解答してください.