公開日時: 2025年9月13日18:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
三角形 $OAB$ がある.点 $C$ を$\angle CAO=\angle BAO$, $AC\perp CO$ となるように辺 $AB$ に対し点 $O$ と同じ側に取る.
また,点 $B$ から直線 $CO$ に引いた垂線の足を $D$ とする.
$C$ を通り直線 $OB$ に垂直な直線と $D$ を通り直線 $OA$ に垂直な直線の交点を $G$ とするとき,
$CD=17,\, GO=8,\, GC=15$ である.
このとき $AB$ の長さは互いに素な正整数 $a,b$ と平方因子を持たない正整数 $c$ を用いて $\dfrac{b\sqrt{c}}{a}$ と書けるので,$a+b+c$ を求めよ.
半角数字で入力してください。
公開日時: 2025年9月7日23:04 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
三角形$ABC$において,$AB,BC$の中点をそれぞれ$M,N$とし,重心を$G$とします.三角形$AGM$の外接円と三角形$CGN$の外接円が再び交わる点を$P$とすると以下が成立しました.$$GP//BC AB=5 AC=4$$このとき線分$GP$の長さの二乗は互いに素な正整数$a,b$を用いて$\dfrac{a}{b}$と表せるので,$a +b$の値を解答して下さい.
例)ひらがなで入力してください。
公開日時: 2025年9月3日21:18 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
三角形 $ABC$ において,角 $A,B,C $の傍接円の半径をそれぞれ $r_A,r_B,r_C$ とし,内接円の半径を $r $とする.このとき,三角形 $ABC$ が以下の条件を満たすとき$r_A\cdot r_B\cdot r_C \cdot r$の最大値を求めよ.
$$BC=28,∠BAC=60 $$
自然数となるので、その値を入力してください
公開日時: 2025年8月31日21:55 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$\alpha^5-1=0$ を満たす複素数 $\alpha$ に対して関数 $f$ を $f(x)=\alpha x+1$ で定義したとき,
$f^{100}(1)$ としてありうる値の総和をすべて求めてください. ただし,$f^{100}(x)$ は $f$ を $100$ 回合成した関数とします.
例)非負整数を答えてください.
ごめんなさい解答形式を書いてなかったです
公開日時: 2025年8月30日22:57 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
円Oが存在して、円O上に点A,B,C,Dをこの順に配置する。角ABD、角DCAそれぞれの二等分線の交点をE、角BAC、角CDBそれぞれの二等分線の交点をF、BDとACの交点をG、△ABG、△DCGそれぞれの内心をI,I’とする。
$$AB=\frac{19}{2},EF=11,△ABI=\frac{19}{2} $$
の時、四角形EIFI’の面積を求めよ。
求める値は互いに素な正整数a,bでa/bと表せるので、a+bを解答してください。
公開日時: 2025年8月24日20:53 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
三角形$ABC$において,$A,B,C$から対辺に下ろした垂線の足をそれぞれ$D,E,F$とし,垂心を$H$とします.三角形$DEF$の外接円と三角形$HBC$の外接円の交点を$P,Q$とし,$EF$の中点を$M$とします.直線$HM$と直線$PQ$の交点を$R$とすると,$DR$は$AB$の中点を通り,$BC$の中点を$N$とすると,$$ND=2 CE=5$$が成立しました.このとき,$AB$の長さの二乗は互いに素な正整数$a,b$を用いて$\dfrac{a}{b}$と表せるので,$a +b$の値を解答して下さい.
半角で解答して下さい.