公開日時: 2025年8月3日0:32 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$a_{1},a_{2}, \cdots , a_{1500}$ は $1$ 以上 $3$ 以下の整数からなる数列であり,$a_{1501}=a_{1} =1,a_{1502}=a_{2}$ と定義すると全ての $1500$ 以下の正整数 $k$ で $a_{k+1} \neq a_{k}$ が成り立ち,かつ $1500$ 以下の正整数 $i$ のうち,
・$(a_{i},a_{i+1})=(1,3)$ となるものがちょうど $132$ 個
・$(a_{i},a_{i+1})=(2,1)$ となるものがちょうど $213$ 個
・$(a_{i},a_{i+1})=(3,2)$ となるものがちょうど $321$ 個
・$(a_{i},a_{i+1},a_{i+2})=(1,2,3)$ となるものがちょうど $123$ 個
ずつ存在します.この数列としてありうるものの数が $3$ で割れる最大の回数を求めてください.(電卓の使用を推奨します.)
半角数字で解答してください.
公開日時: 2025年8月1日10:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$AB<AC$ なる三角形があり,辺 $BC$ の中点を $M$ とし直線 $AM$ と三角形 $ABC$ の外接円との交点のうち $A$ でないものを $D$ とすれば,
$$AB=BD,\quad AM=3,\quad CD=2$$
が成立したので線分 $BC$ の長さの $\mathbf{4}$ 乗を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
公開日時: 2025年8月1日10:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
鋭角三角形 $ABC$ があり,$A$ から $BC$ におろした垂線の足を $H$ とします.三角形 $ABC$ の外接円の,$C$ を含まない方の弧 $AB$ 上に点 $P$ をとれば,
$$\angle APH=90^\circ ,\quad BH=3,\quad CH=4,\quad AP=10$$
が成立したので線分 $AB$ の長さの $2$ 乗を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
公開日時: 2025年8月1日10:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
一辺の長さが $10$ である正方形 $ABCD$ があり,辺 $AB,BC,CD$ 上にそれぞれ点 $P,Q,R$ を三角形 $PQR$ が $PQ=QR$ の直角三角形になるようにとると,五角形 $APQRD$ の周の長さは $36$ であった.このとき五角形 $APQRD$ の面積を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
公開日時: 2025年8月1日10:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
三角形 $ABC$ において内接円と辺 $BC,CA,AB$ の接点をそれぞれ $D,E,F$ とします.直線 $AD$ と三角形 $ABC$ の外接円の交点のうち $A$ でないものを $G$ とすると,
$$DG=BF,\quad AD=9,\quad AF=4$$
が成立したので線分 $DE$ の長さの $2$ 乗を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
公開日時: 2025年8月1日10:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
円に内接する四角形 $ABCD$ があり,対角線の交点を $E$ とすると,
$$BE=CD,\quad AB=16,\quad BD=35,\quad CE=25$$
が成立しました.このとき線分 $AC$ の長さを解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
公開日時: 2025年8月1日10:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
鋭角三角形 $ABC$ があり,点$A,B,C$ から対辺におろした垂線の足をそれぞれ $D,E,F$ とします.$AD,EF$ の交点を $P$ とすると,以下が成立しました.
$$DE=37,\quad EF=40,\quad AP:PD=5:6$$
このとき線分 $DF$ の長さを解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
公開日時: 2025年8月1日10:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$AB<AC$ を満たす三角形 $ABC$ があり,外接円を $\Gamma$ ,$A$ 混線内接円を $\Omega$ とします.$\Gamma$ と $\Omega$ の接点を $P$ とし,$\Gamma$ の点 $A$ を含む方の弧 $BC$ の中点を $M$ とし,線分 $MP$ と $\Omega$ の交点のうち $P$ でない方を $X$ ,線分 $AP$ と $\Omega$ の交点のうち $P$ でない方を $Y$ ,直線 $AX$ と $\Gamma$ の交点のうち $A$ でない方を $Z$ とすると以下が成立しました.
$$XY=3,\quad XZ=15,\quad PY=10$$
このとき線分 $AM$ の長さは互いに素な正の整数 $a,b$ を用いて $\displaystyle \frac{a}{b}$と表されるので $a+b$ を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
公開日時: 2025年8月1日10:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$\angle A$ が鈍角である内接四角形 $ABCD$ があり,三角形 $ABD$ の内接円と $AB,AD$ の接点をそれぞれ $P,Q$ とし,三角形 $BCD$ の内接円と $BC,CD$ の接点をそれぞれ $R,S$ とします.三角形 $ABD$ における $\angle A$ 内の傍接円と直線 $AB$ の接点を $T$ とすると,以下が成立しました.
$$BT=BR,\quad PR=6,\quad QS=7,\quad BD=9$$
このとき三角形 $BPR$ の面積の $2$ 乗を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
公開日時: 2025年8月1日10:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
三角形 $ABC$ があり内心を $I$ とし,辺 $BC$ の中点を $M$ とすると,
$$AB:AC=3:5,\quad AI=IM=20$$
が成立したので線分 $AB$ の長さの $2$ 乗を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
公開日時: 2025年8月1日10:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
三角形 $ABC$ があり,線分 $BC$ 上に点 $P$ をとる.三角形 $ABP$$,$ 三角形 $ACP$ の内心をそれぞれ $I,J$ とすると,
$$IJ \parallel BC,\quad AB:AC=4:5,\quad BP=8,\quad CP=9$$
が成立したので三角形 $ABC$ の面積を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
公開日時: 2025年8月1日10:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
三角形 $ABC$ があり重心を $G$ とし,辺 $AB,AC$ の中点をそれぞれ $M,N$ とします.辺 $BC$ 上に点 $P$ をとると $4$ 点$BMGP$ ,$4$ 点 $CNGP$ はそれぞれ共円であり,
$$BP=3,\quad CP=5$$
が成立したので線分 $AP$ の長さの $2$ 乗を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.