公開日時: 2020年6月7日20:25 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
実数$ a $ を $a=\sqrt[3]{1+\sqrt2} +\sqrt[3]{1-\sqrt2}$ で定める。以下の問いに答えよ。
⑴ $a^3+3a-2=0$ であることを示せ。また、$0<a<2$ を示せ。
⑵ $x$ について以下の恒等式が成り立つことを示せ。
$$
x^4+4x-3=(x^2+a)^2-2a(x-\frac{1}{a})^2
$$
⑶ 4次方程式 $x^4+4x-3=0$ の実数解を $a$ を用いて表せ。
⑶のみ解答せよ。解は2つ存在し、
$$
x= -\sqrt{\frac{ア}{イ}}\ \pm \ \sqrt{\sqrt{\frac{ウ}{エ}}-\frac{オ}{カ}}
$$
の形である。ア~カのそれぞれには1から9までの自然数または文字$a$が入る。
ア~カに当てはまる数字または文字を、順にすべて半角で入力せよ。
たとえばア=2、イ=7、ウ=3、エ=5、オ=8、カ=$a$ と解答する場合は、
「27358a」と入力せよ。
公開日時: 2020年6月6日22:31 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
非負整数$n$に対し関数$f$を次のように定める。
$$f(n) = \frac{(n^2)!}{(n!)^{n+1}}$$
$1$から$2020$までの整数について$f(n)$が整数となるような$n$の個数を求めよ。
半角数字で入力せよ。
公開日時: 2020年6月6日18:47 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$x^4+4$ を因数分解せよ。また、この結果を用いて $50629$ を素因数分解せよ。
50629の素因数を小さい順に1,2,3......行目に半角数字で入力せよ。
公開日時: 2020年6月6日11:35 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
(1) $a,b$ を整数でない正の有理数とする。 $a^b$ は常に無理数か。
(2) $a$ を整数でない正の有理数とする。 $a^a$ は常に無理数か。
(3) $a,b$ を正の無理数とする。 $a^b$ は常に無理数か。
(4) $a$ を正の無理数とする。 $a^a$ は常に無理数か。
解答欄に改行区切りで O
(オー)または X
(エックス)を記述せよ。正解判定は各行に対して行われ、完答のみ正解となる。
公開日時: 2020年6月4日18:02 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
「ボ」と「ー」からなる文字列のうち,以下の条件を満たすものをボー文字列と呼ぶことにします.
条件:長音記号「ー」が文字列の先頭にくることはなく,連続して現れない.
例えば,「ボボー」や「ボーボボ」はボー文字列ですが,「ーボー」や「ボボーー」はボー文字列ではありません.
ボー文字列に対して,次の操作を行うことを考えます.
操作:ボー文字列に対して,次のうちいずれか一方を行う.
ただし,得られた文字列はボー文字列でなければならない.
1文字「ボ」から始めて,ボー文字列に対してくり返し操作を行い $n$ 文字からなるボー文字列が得られたとします.異なる操作の仕方の総数を $a_n$ とするとき,$a_{10}$ を求めなさい.
半角数字で入力してください。
公開日時: 2020年6月3日12:32 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$m$ と $n$ を互いに素な自然数とします.実数係数多項式 $f(x)$ が次の性質をもっているとき,$f(x)$ を $m,n$-生成の多項式と呼ぶことにします.
$x^k$ がすべての $10,n$-生成の多項式を割り切るような最大の自然数 $k$ は
です.ただし,単項式も多項式に含まれるとします.
センター試験方式です.ア,イ,ウにはそれぞれ 0,1,2,3,4,5,6,7,8,9
および -,a,b,c,d
のいずれか1文字が当てはまります.ア,イ,ウに 1, 2, 3
が当てはまるなら,123
と回答してください.