数学の問題一覧

カテゴリ
以上
以下

三次方程式と絶対値

noname 自動ジャッジ 難易度:
2月前

2

問題文

$a,b,c$を正の実数とし、$k$を実数とします。$x$の方程式$x^3-ax^2+bx-c=0$が$3$つの実数解$α,β,γ$を持ち、次が成り立ちます。
・$|α+β|=a+2$
・$|αβ|=b-k$

$γ$を$k$を用いて表してください。

解答形式

解答はある正の整数$p,q,r$を用いて
$γ=-p+\sqrt{q-rk}$
と表せますから、$p+q+r$の値を解答してください。

線対称と点対称

shippe 採点者ジャッジ 難易度:
2月前

1

珍しく良問

線対称かつ点対称な図形Xのうち、
対称軸上に対称点がないようなものは
存在しないことを示してください。

解答形式

日本語で答えてください。大意が伝われば良いです(最低限伝わるようお願いします)。

連立条件下の変数和の値

yaguwa 自動ジャッジ 難易度:
2月前

3

問題

実数$x,y$が
$$
\begin{cases}
x^2+y^2=1\\
2x^3+2y^3=1
\end{cases}
$$
を満たしているとき,$x+y$ のとりうる値をすべて求めよ.

解答形式

解答に$sinθ,cosθ$を含む場合は,$cosθ(0<θ<π)$に統一し,記入例にしたがって全て$半角$で解答してください.なお,度数法で解答すると不正解となるので,弧度法を用いてください.
小数などを用いた近似値での解答は不正解となります.
複数の解答がある場合は小さい値から順に上から改行してください.

記入例
3cos(5π/6)
3cos(π/3)

関数方程式 解説修正版

Sry 自動ジャッジ 難易度:
2月前

13

$$問 題$$
$実数全体で定義され、実数値を取る定数でない関数f(x)がある。$
$この関数が任意の実数x,yに対して恒等式$
$$f(x ^2+y)=f(kx ^2+2y)−f(3x ^2)$$
$を満たすとき、定数kの値を求めよ。$

連立方程式

smasher 自動ジャッジ 難易度:
2月前

4

問題文

以下の連立方程式を満たすような実数の組$(a,b,c,d)$の個数を求めよ。
$$
\begin{cases} ab^2c^3d^4=1 \\ a^4bc^2d^3=1\\a^3b^4cd^2=1\\a^2b^3c^4d=1\end{cases}
$$

解答形式

半角数字で個数を入力してください。

世界最高峰の超良問

kikutaku 採点者ジャッジ 難易度:
3月前

1

問題文

太郎君は次のルールで行動する:
前日に花子さんで抜いた場合、次の日に抜く確率は$\frac{1}{5}$
前日に花子さんで抜かなかった場合、次の日に抜く確率は$\frac{2}{3}$
今日花子さんで抜かなかったとき$n$日後に抜く確率を$P_n$とする。
$n \to \infty$のときの$P_n$を、小数点5位を四捨五入して、小数点4位まで求めよ。

解答形式

答えのみ記入

sEigEn sign

piroshiki 自動ジャッジ 難易度:
3月前

15

問題文

$\lim\limits_{n\to\infty} n\sin\frac{2π}{n} = mπ$ である。
$m$の値を求めよ。

解答形式

$m$は2つの実数$a,b$を使って $\frac{a}{b}$と表せる。
$m$を分母が有理化された既約分数の形にした時の$a+b$を解答すること。

暁山瑞希 誕生日

shakayami 自動ジャッジ 難易度:
3月前

8

三角形 $ABC$ について, 内心を $I$ , $A$ に関する傍心を $I_A$ , $\angle A$ の二等分線と $BC$ の交点を $D$ , 三角形 $ABC$ の外接円上の点であって, 点 $A$ を含まない方の弧 $BC$ の中点を $M$ とします.

$AM=27,MI_A=8$ のとき, $ID$ の長さを求めてください. ただし, 答えは有理数となるため, 既約分数 $a/b$ と書いたときの $a+b$ を答えてください.

積分計算の基礎

astraea 自動ジャッジ 難易度:
3月前

3

問題文

$\alpha$が$\tan\alpha= \frac{1}{\sqrt{2}}$($0<\alpha< \frac{π}{2}$)を満たす定数であるとき、定積分$ \frac{1}{π}\int_{\alpha}^{\frac{π}{4}} \frac{\tan^{3}θ+\tanθ}{\tan^{4}θ-\tan^{2}θ+1}dθ $の値を求めよ。

解答形式

分母を有理化すると自然数$a,b$を用いて$ \frac{\sqrt{a}}{b}$と表されるので、$a+b$の値を半角入力の数字のみで答えてください。

Cat😸

Hapican_ 自動ジャッジ 難易度:
3月前

33

問題文

$AB=AC=19,CE=DE=22$ である直角二等辺三角形 $ABC,CDE$ を $B,C,D$ がこの順に一直線上に並び、$A,E$ が $BD$ に関し同じ側にあるように置く。$CD$ の中点を$M$、$AM$ と $BE$ の交点を $P$ ,直線 $PC$ と $\triangle BMP$ の外接円の交点を $Q(\neq P)$ としたとき、$BQ^2$ を求めよ。

解答形式

半角数字で入力してください。

整数問題

Sry 自動ジャッジ 難易度:
3月前

15

問題文

次の式を満たす相異なる正の整数$p,q$を全て求めよ。

$$p^{p+q}−q^{p+q}=(pq)^p−(pq)^q$$

解答形式

$p+q$の値をそれぞれの組で求め総和した値を半角で入力してください。

複素数平面上を動く点

astraea 自動ジャッジ 難易度:
3月前

9

問題文

任意の自然数$i$に対して、$z_i$は$z_i^6=1$を満たす複素数である。複素数$w$について、$w= \sum_{k=1}^{100}z_k$とするとき、$w$がとりうる値の個数を求めよ。

解答形式

自然数(半角入力)のみで答えてください。