実数$x,y$が
$$
\begin{cases}
x^2+y^2=1\\
2x^3+2y^3=1
\end{cases}
$$
を満たしているとき,$x+y$ のとりうる値をすべて求めよ.
解答に$sinθ,cosθ$を含む場合は,$cosθ(0<θ<π)$に統一し,記入例にしたがって全て$半角$で解答してください.なお,度数法で解答すると不正解となるので,弧度法を用いてください.
小数などを用いた近似値での解答は不正解となります.
複数の解答がある場合は小さい値から順に上から改行してください.
記入例
3cos(5π/6)
3cos(π/3)
$$問 題$$
$実数全体で定義され、実数値を取る定数でない関数f(x)がある。$
$この関数が任意の実数x,yに対して恒等式$
$$f(x ^2+y)=f(kx ^2+2y)−f(3x ^2)$$
$を満たすとき、定数kの値を求めよ。$
$\lim\limits_{n\to\infty} n\sin\frac{2π}{n} = mπ$ である。
$m$の値を求めよ。
$m$は2つの実数$a,b$を使って $\frac{a}{b}$と表せる。
$m$を分母が有理化された既約分数の形にした時の$a+b$を解答すること。
任意の自然数$i$に対して、$z_i$は$z_i^6=1$を満たす複素数である。複素数$w$について、$w= \sum_{k=1}^{100}z_k$とするとき、$w$がとりうる値の個数を求めよ。
自然数(半角入力)のみで答えてください。