数学の問題一覧

カテゴリ
以上
以下

階乗のシグマと合同式

sulippa 自動ジャッジ 難易度:
3月前

2

問題

$p$を$3$より大きい素数とする
$S=\sum_{k=1}^{p-2} k \cdot (k!) \cdot ((p-k-1)!)$ 
を$p$で割った余りを求めよ。

解答形式

解答は既約分数で表せるので、
1行目に分子、
2行目に分母
を半角で書いてください
分母は1になる場合も書いてください

不等式の証明(解説あり)

sulippa 採点者ジャッジ 難易度:
3月前

0

問題文

$0.017$$<$$tan1°$$<$$0.018$
を示せ。

解答形式

大学数学なし
自己流ですが、解説を付けているのでぜひ挑戦してみてください

整数問題 解説あり

sulippa 自動ジャッジ 難易度:
3月前

3

問題文

$p$ を $p \ge 5$ なる素数とする。集合 $G_p = {1, 2, \dots, p-1}$ の部分集合 $S$ が自己双対的であるとは、
$$a \in S \implies a^{-1} \pmod p \in S \quad \text{かつ} \quad a \in S \implies p-a \in S$$
が全ての $a \in S$ に対して成り立つことと定義する(ここで $a^{-1}$ は $\pmod p$ における $a$ の乗法逆元)。

$N_p$ を、$G_p$ の自己双対的な部分集合 $S$ の総数とする(空集合 $\emptyset$ も含む)。

$N_p = 32$ となるような素数 $p$ ($p \ge 5$) をすべて求めよ。


解答形式

解を半角1スペースおきに小さい順に並べてください

極限

sulippa 自動ジャッジ 難易度:
3月前

7

問題文

n を正の整数とし、$p$ を素数とする。$n!$ の素因数分解における $p$ の指数を $E_p(n!) = \sum_{k=1}^{\infty} \lfloor \frac{n}{p^k} \rfloor$ とする。

量 $Q_n$ を次のように定義する。
$$ Q_n = \sum_{p \le n} \left( \frac{n}{p-1} - E_p(n!) \right) \log p $$
ただし、和は $n$ 以下の全ての素数 $p$ を走り、$\log$ は自然対数とする。

次の極限値を求めよ。
$$ \lim_{n \to \infty} \frac{Q_n}{n} $$

ただし、オイラー・マスケロー二定数を $γ$ とする。

解答形式

半角で

3直線に接する放物線の決定

AS 自動ジャッジ 難易度:
3月前

1

$a,b,c\ (a\neq0)$ を実数とする.放物線 $y=ax^2+bx+c$ が,$3$ 直線
$\ y=x-2,\ y=-3x+2,\ y=7x-3$
の全てと接するとき,$a,b,c$ の値を求めよ.

答えは,$a,b,c$ の値をそれぞれ $1,2,3$ 行目に記入せよ.ただし,整数でない有理数は既約分数(分母は自然数,分子は整数で,互いに素)で表し,$\displaystyle\frac{-5}{13}$ なら
-5/13
のように記入して答えよ.

【解答例】
1
-2
-1/3

変換の順序

AS 自動ジャッジ 難易度:
4月前

1

方程式 $x^2+xy+y^3=7$ の表す図形を $y$ 方向に $\fbox{ (1) }$ 平行移動してから $\fbox{ (2) }$ に関して対称移動し,$x$ 方向に $\fbox{ (3) }$ 平行移動し,$\fbox{ (4) }$ に関して対称移動すると,方程式 $x^3-3x^2+xy-y^2+5y=0$ の表す図形となる.

以上の空欄 $(1)\sim(4)$ を適切に補充せよ.ただし,$(1),(3)$ には数値を答え,$(2),(4)$ には以下の語群から言葉を選び答えよ.

【語群】
$\mathrm A.\,x$ 軸
$\mathrm B.\,y$ 軸
$\mathrm C.$ 直線 $y=x$

答えは,空欄 $(1),(2),(3),(4)$ に当てはまる数または記号をそれぞれ $1,2,3,4$ 行目に記して答えよ.
ここで,整数でない有理数は既約分数(分母は自然数,分子は整数で,互いに素)で表し,$\displaystyle\frac{-5}{13}$ なら
-5/13
と記すこと.

【解答例】
3
A
-5/13
B

三角比の変形

itami 自動ジャッジ 難易度:
4月前

1

(tan80°-2sin80°)/(1+2cos80°)=tanA°
A=?°

近似値を用いずに求めてください

数値のみ

正三角形ができない方法

AS 自動ジャッジ 難易度:
4月前

0

正 $6$ 角形 $\mathrm{ABCDEF}$ の中心を $\mathrm O$ とし,正 $6$ 角形の $6$ 個の辺と,$\mathrm O$ と各頂点を結ぶ $6$ 個の線分の,計 $12$ 個の線分を考える.このとき,これらの線分を辺とする正三角形が $6$ 個できている.これらの線分のうちの幾つかを取り除いて,正三角形が $1$ つもできない状態を作りたい.そのような取り除き方は何通りか求めよ.

総当たり戦の確率

AS 自動ジャッジ 難易度:
4月前

0

$6$ 個のチームが総当たり戦をおこなう.つまり,各チームは他のチームとそれぞれ $1$ 回ずつ試合をおこない勝敗を決める.ただし,各試合において引き分けはなく,いずれが勝つかは等確率であるとする.
このとき,$3$ 勝 $2$ 敗のチームがちょうど $3$ チームできる確率を求めよ.

答えは互いに素な自然数 $\eta,\zeta$ を用いて $\displaystyle\frac \eta\zeta$ と表されるので,$1$ 行目に $\eta$ を,$2$ 行目に $\zeta$ を記して答えよ.

指数型曲線の長さ2

AS 自動ジャッジ 難易度:
4月前

0

$e$ は自然対数の底とする.座標平面上において
$\ x=t-e^{2t},\ y=2e^t+e^{-t}$
によってパラメータ表示される曲線について,$0\leqq t\leqq \log 2\sqrt2$ 部分の長さを求めよ.

答えは $\displaystyle\frac{\fbox{ (1) }\sqrt{\fbox{ (2) }}}{\fbox{ (3) }}$ の形で表されるので,空欄 $ (1),(2),(3)$ に当てはまる自然数をそれぞれ $1, 2, 3$ 行目に記して答えよ.ただし,最も簡単な形に直して答えること.

指数型曲線の長さ

AS 自動ジャッジ 難易度:
4月前

0

$e$ は自然対数の底とする.
$\ x=(2t-1)e^t,\ y=2(t^2-t+1)e^t$
でパラメータ表示される曲線について,$0\leqq t\leqq 1$ 部分の長さを求めよ.

答えは有理数 $a,b$ を用いて $a+be$ の形で表されるので,$a,b$ の値をそれぞれ $1, 2$ 行目に記して答えよ.
ここで,整数でない有理数は既約分数(分母は自然数,分子は整数で,互いに素)で表し,$\displaystyle\frac{-5}{13}$ なら
-5/13
のように記入する.

往来可能な路線図

AS 自動ジャッジ 難易度:
4月前

0

凸 $5$ 角形の頂点に町が $1$ つずつ,合計 $5$ つある.これらの町のうち $2$ つを結ぶような真っ直ぐな路線を何本か自由に引く方法を考える.なお路線は交差してもよい.
このとき,路線によって全ての町が往来可能となるような方法の総数を求めよ.