公開日時: 2025年2月11日23:36 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 採点者ジャッジ
x, y は x^2 + y^2 = 1 を満たす実数である。このとき、、等式 x^2 + y^2 + (y/x)^2 - xy - (y^2)/x - y = 0を満たすx, yは存在するか。 存在する場合はx, yを求め、存在しない場合はそれを示せ。
日本語で論述してください。
公開日時: 2025年2月11日1:21 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$f(x)$を$2$次の多項式とする。
$4$次方程式$f(f(x))=x$が$4$つの実数解$x=x_i(i=1,2,3,4)$を持つとき、
座標平面上の$4$点$P_i(x_i,f(x_i))$が同一円周上にあることを示せ。
問1において、$f(x)=3x^2-11x-15$の場合について、
実際に$4$点$P_i$が共有する円の半径$r$と中心の座標(p,q)を求め、
$pqr^2$の値を解答せよ。
公開日時: 2025年2月5日1:40 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$1$ から $30$ までの自然数が書かれたカードがそれぞれ $1$ 枚ずつの計 $30$ 枚ある。
この中から $1$ 枚を引き,書かれている数字を確認してから束に戻す操作を $11$ 回繰り返す。
この $11$ 回の操作で得られた自然数を小さい順にならべ,$A_{1}$ から $A_{11}$ とする。
$A_{1}$ から $A_{11}$ は以下の条件を満たしている。
<条件>
① $A_{1}$ から $A_{11}$ は相異なる自然数である。
② データの範囲は $27$ である。
③ データの四分位範囲 [$\mathrm{IQR}$] は $9$ である。
④ 四分位数 [$Q_1,Q_2,Q_3$] はこの順に等比数列になっている。
⑤ 中央値と平均値 [$\bar{A}$] の差の絶対値は $1$ である。
⑥ $A_7$ から $A_{11}$ までの $5$ つの数の和は $A_1$ から $A_5$までの $5$ つの数の和のちょうど $2$ 倍である。
⑦ $A_{1}$ から $A_{11}$ の中に立方数が $2$ つある。
⑧ このデータのうち四分位数を除いた $8$ 個の数字を $2$ つずつに分けてできた $4$ つの数字の組
$(A_1,A_2),(A_4,A_5),(A_7,A_8),(A_{10},A_{11})$ について、それぞれの組に $1$ つずつ素数がある。
⑨ このデータには外れ値が $1$ つ存在する。ただし外れ値は以下の通りに定義する。
[$Q_1-1.5 \times \mathrm{IQR}$ 以下 または $Q_3+1.5 \times \mathrm{IQR}$ 以上]
問 このデータの要素を決定せよ。
$A_1$ から $A_{11}$ までの11個の自然数を半角空白区切りで1行で回答
問題の不備などありましたら,
感想から教えてくださるとありがたいです。
公開日時: 2025年2月5日0:01 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
どの$2$辺の長さも等しくない鋭角三角形$ABC$の外心,垂心をそれぞれ$O,H$とし,辺$BC$の中点を$M$とします.
$A,B,C$から対辺に下ろした垂線の足をそれぞれ$D,E,F$とし,直線$DE$と直線$AB$の交点を$P$,直線$DF$と直線$AC$の交点を$Q$とすると,$$
EF=4 AH=5 PQ||AM$$が成り立ちました.直線$PQ$と直線$OH$との交点を$R$とするとき,線分$OR$の長さの$2$乗は互いに素な正整数$a,b$を用いて$\dfrac{a}{b}$と表されるので,$a+b$の値を解答してください.
半角で解答してください.
公開日時: 2025年1月31日9:38 / ジャンル: 数学 / カテゴリ: 算数 / 難易度: / ジャッジ形式: 自動ジャッジ
工夫して答えなさい。
99×99=?
公開日時: 2025年1月29日21:39 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ
1 次の式を計算せよ。
(1) −5−(−3)
公開日時: 2025年1月27日22:26 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$ $ 原点を $O$ とする $xy$ 平面において,(正とは限らない)整数 $n$ に対し座標 $(60, n)$ の点を $P_n$ と表します.$n$ を整数全体で動かしたとき,線分 $OP_n$ の長さとしてあり得る整数値の総和を求めて下さい.
半角英数にし,答えとなる正整数値を入力し解答して下さい.
公開日時: 2025年1月26日20:57 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
点$O_1,O_2$を中心とする円$\omega_1,\omega_2$が異なる$2$点$A,B$で交わっている。これらの共通外接線のうち直線$O_1O_2$に関して$B$と同じ側に接点を持つ物を$l$とし、$\omega_1,\omega_2$との接点を$S_1,S_2$とする。
直線$AB$と$l$の交点を$X$とし、$X$から$\omega_1,\omega_2$に引いた($l$以外の)接線の接点を$T_1,T_2$とすると、$O_1,T_2,S_2$ / $O_2,T_1,S_1$はそれぞれ一直線上にあった。
$\omega_1$の半径が$\sqrt{3}$、$S_1X=\sqrt{2}$のとき、五角形$AO_1S_1S_2O_2$の面積を求めてください。
求める値は正整数$a$及び、互いに素な正整数$b,c$、平方因子を持たない正整数$d$により$a+\dfrac{b\sqrt{d}}{c}$
と表せるので、$a+b+c+d$を半角英数字で入力してください。
公開日時: 2025年1月23日17:03 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$$
2x^{11}+3x^{10}-6x^9+x^8+2x^7
+11x^6-4x^5+7x^4+6x^3+9x^2+2x-3を因数分解せよ
$$
括弧の次数【$()^2$の形】の高い順に並べてください。()の中のxの式の次数が高いものは後半に並べてください。xの式の次数が同じ、かつ括弧の次数が同じもの同士では、1次の項の係数が大きい順(x,2xだったら2xが含まれる式の方を先に書く)にしてください。