数学の問題一覧

カテゴリ
以上
以下

katsuo_temple

公開日時: 2025年2月5日0:01 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

どの$2$辺の長さも等しくない鋭角三角形$ABC$の外心,垂心をそれぞれ$O,H$とし,辺$BC$の中点を$M$とします.
$A,B,C$から対辺に下ろした垂線の足をそれぞれ$D,E,F$とし,直線$DE$と直線$AB$の交点を$P$,直線$DF$と直線$AC$の交点を$Q$とすると,$$
EF=4 AH=5 PQ||AM$$が成り立ちました.直線$PQ$と直線$OH$との交点を$R$とするとき,線分$OR$の長さの$2$乗は互いに素な正整数$a,b$を用いて$\dfrac{a}{b}$と表されるので,$a+b$の値を解答してください.

解答形式

半角で解答してください.

18jn-055@izo-ed.jp

公開日時: 2025年1月31日9:38 / ジャンル: 数学 / カテゴリ: 算数 / 難易度: / ジャッジ形式: 自動ジャッジ


工夫して答えなさい。

99×99=?

18jn-055@izo-ed.jp

公開日時: 2025年1月29日21:39 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ


1 次の式を計算せよ。

(1) −5−(−3)

Shota_1110

公開日時: 2025年1月27日22:26 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$ $ 原点を $O$ とする $xy$ 平面において,(正とは限らない)整数 $n$ に対し座標 $(60, n)$ の点を $P_n$ と表します.$n$ を整数全体で動かしたとき,線分 $OP_n$ の長さとしてあり得る整数値の総和を求めて下さい.

解答形式

半角英数にし,答えとなる正整数値を入力し解答して下さい.

sha256

公開日時: 2025年1月26日20:57 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ

平面図形 初等幾何

問題文

点$O_1,O_2$を中心とする円$\omega_1,\omega_2$が異なる$2$点$A,B$で交わっている。これらの共通外接線のうち直線$O_1O_2$に関して$B$と同じ側に接点を持つ物を$l$とし、$\omega_1,\omega_2$との接点を$S_1,S_2$とする。

直線$AB$と$l$の交点を$X$とし、$X$から$\omega_1,\omega_2$に引いた($l$以外の)接線の接点を$T_1,T_2$とすると、$O_1,T_2,S_2$ / $O_2,T_1,S_1$はそれぞれ一直線上にあった。

$\omega_1$の半径が$\sqrt{3}$、$S_1X=\sqrt{2}$のとき、五角形$AO_1S_1S_2O_2$の面積を求めてください。

解答形式

求める値は正整数$a$及び、互いに素な正整数$b,c$、平方因子を持たない正整数$d$により$a+\dfrac{b\sqrt{d}}{c}$
と表せるので、$a+b+c+d$を半角英数字で入力してください。

Rak

公開日時: 2025年1月24日22:44 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ

オイラー線 五心

問題文

△ABC(AB<AC)の垂心をH、外心をOとし、直線HOと辺AB,BCの交点をD,Eとし、点Eは線分BCを3:1に内分している。このとき、AD/DBの値を求めなさい。ただし、Bの側からD,H,O,Eの順に位置している。

解答形式

互いに素な正の整数a,bを用いて、b/aの形で答えてください。
解答には
AD/DB=b/aと答えてください。

ac

公開日時: 2025年1月24日13:01 / ジャンル: 数学 / カテゴリ: / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

ある数AとBがある。
(A<B)のとき次の式は「成り立つ」か成り立たないか。
成り立たない場合は正しい等号、不等号を書け。

$$
\frac{B}{A}-AB<(\frac{A}{B})^{2}
$$

ac

公開日時: 2025年1月24日11:43 / ジャンル: 数学 / カテゴリ: / 難易度: / ジャッジ形式: 自動ジャッジ


問題

次の式を計算しなさい。

$$
\frac{(28^{2}+28-27^{2}+27)^{2}}{5!^{2}}-(\frac{11}{12})^{2}
$$

Watagumo

公開日時: 2025年1月23日17:03 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題

$$
2x^{11}+3x^{10}-6x^9+x^8+2x^7
+11x^6-4x^5+7x^4+6x^3+9x^2+2x-3を因数分解せよ
$$

解答形式

括弧の次数【$()^2$の形】の高い順に並べてください。()の中のxの式の次数が高いものは後半に並べてください。xの式の次数が同じ、かつ括弧の次数が同じもの同士では、1次の項の係数が大きい順(x,2xだったら2xが含まれる式の方を先に書く)にしてください。

seven_sevens

公開日時: 2025年1月18日0:00 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 採点者ジャッジ

積分

$a$は$x$と独立であるとする。
$x$の方程式
$$(\cos^4x)^{\log_2(a\sin x)+1}=(a\sin2x)^{\log_2(a\sin2x)}$$
の$0\leqq x\leqq \frac\pi2$における解を$y$とする。
この時、以下の値を求めよ。
$$\int_0^1\frac1{\sin^2y}da$$

7777777

公開日時: 2025年1月18日0:00 / ジャンル: 数学 / カテゴリ: / 難易度: / ジャッジ形式: 採点者ジャッジ


この問題には、必ず最初に解答をしてください。
解答はどんなものでも構いません。もし迷った際は、以下の文章をコピーペーストしても構いません。
「生命、宇宙、そして万物についての究極の疑問の答えは42です」
最初に解答されなかった場合、以降の解答は無効となります。

seven_sevens

公開日時: 2025年1月18日0:00 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 採点者ジャッジ

積分

$$\int^1_0\int^{\sqrt{1-z^2}}_0\sqrt{1-z^2-y^2}dydz$$