数学の問題一覧

カテゴリ
以上
以下

nflight11

公開日時: 2024年11月3日22:58 / ジャンル: 数学 / カテゴリ: 大学数学 / 難易度: / ジャッジ形式: 自動ジャッジ

韓国大学生数学競技大会

問題文

次の式を満足す実数 $N$ を求めなさい.

$$\sum_{k=1}^{2024}(2025-k) \cdot 2024^k \cdot 2025^{2024-k} = 2024^N$$

解答形式

$N$ をそのまま入力してください.

nflight11

公開日時: 2024年11月3日22:48 / ジャンル: 数学 / カテゴリ: 大学数学 / 難易度: / ジャッジ形式: 採点者ジャッジ

韓国大学生数学競技大会

問題文

3次元座標空間で式 $4z^2=x^2+y^2-1$ を満たす点 $(x,y,z)$ の集合からなる曲面を $S$ とします. 点 $P(1,2,1)$ を通る直線のうち, 正確に二つが $S$ に完全に含まれることを示してください.

またこの二つの直線が成す鋭角を $\theta$ とする時, $\cos\theta$ を求めなさい.

解答形式

最初の行に $\cos\theta$ を入力してください.
2列目は空白にしておいてください.
3行目から証明過程をできるだけ詳しく作成してください.

nflight11

公開日時: 2024年11月3日22:41 / ジャンル: 数学 / カテゴリ: 大学数学 / 難易度: / ジャッジ形式: 自動ジャッジ

韓国大学生数学競技大会

問題文

次の行列 $A$ に対して等式 $A^5 = aA^2+bA+cI$ が成立するる実数 $a, b, c$ を求めなさい. ただし, $I$ は $3\times3$ 単位行列である.
$$A=\begin{pmatrix} 0 & 1 & 1 \\ -1 & 0 & 1 \\ -1 & -1 & 0 \end{pmatrix}$$

解答形式

$a, b, c$ を空白で区切って1行に入力してください. 例えば $(a,b,c)=(7,15,92)$ であれば解答として 7 15 92 を入力してください.

Calculator

公開日時: 2024年11月3日20:19 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

内接五角形$ABCDE$があり、$∠BAC$=$∠CAD$=$∠DAE$である。
また、$AB=12$、$AC=17$、$AD=20$である。
このとき、$AE$の長さは互いに素な正の整数$p,q$を用いて$\frac{p}{q}$と表せるので$p+q$を解答してください。

解答形式

半角で解答してください。

nmoon

公開日時: 2024年11月2日19:00 / ジャンル: 数学 / カテゴリ: / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

2つの正整数 $a,b$ の組のうち,最小公倍数が最大公約数の $10$ 倍となり,$a+b=154$ を満たすもの全てについて,$ab$ の総和を求めてください.

解答形式

非負整数で解答してください.

nmoon

公開日時: 2024年11月2日19:00 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

三角形 $ABC$ の外心を $O$,垂心を $H$,外接円を $\Gamma$ とする.そして,以下のように点を4つとる.

  • 直線 $BH$ と $\Gamma$ との交点を $P(\not=B)$ とする.
  • 直線 $PO$ と $\Gamma$ との交点を $Q(\not=P)$ とする.
  • 直線 $QH$ と $\Gamma$ との交点を $R(\not=Q)$ とする.
  • 直線 $RO$ と $\Gamma$ との交点を $S(\not=R)$ とする.

このとき,3点 $ C,H,S$ が同一直線上にあった.

$$AH=17 , AO=11$$

のとき,三角形 $ABC$ の面積を求めてください.

解答形式

答えを2乗した値は,互いに素な2つの正整数 $a,b$ を用いて $\displaystyle\frac{a}{b}$ と表されるので,$a+b$ を求めてください.

nmoon

公開日時: 2024年11月2日19:00 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

4次方程式 $x^4-4x^3-21x^2-8x+4=0$ の4つの相異なる実数解を,小さいものから順に $a_{1},a_{2},a_{3},a_{4}$ とします.このとき,以下の値を求めてください:

$$\displaystyle\frac{1}{a_{1}^2-a_{1}a_{2}+a_{2}^2}+ \displaystyle\frac{1}{a_{3}^2-a_{3}a_{4}+a_{4}^2} $$

解答形式

互いに素な2つの正整数 $a,b$ を用いて $\displaystyle\frac{a}{b}$ と表されるので,$a+b$ を求めてください.

nmoon

公開日時: 2024年11月2日19:00 / ジャンル: 数学 / カテゴリ: / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

3種類の文字 $A,B,C$ を用いて以下の条件を満たした長さが5の文字列は全部でいくつあるか.

  • $A$ の右隣にある文字は $B$ ではない.

  • $B$ の右隣にある文字は $C$ ではない.

解答形式

非負整数で解答して下さい.

noname

公開日時: 2024年11月2日18:38 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ

整数問題

問題文

$1998^{2024}$の下$2$桁を求めよ。

解答形式

1行目に半角整数で入力してください。

sha256

公開日時: 2024年11月2日16:55 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ

整数 数列

問題文

初項が$1(a_1=1)$の数列{$a_n$}は、任意の正整数$n$に対し
$$
a_{n+1}^3-10a_na_{n+1}^2+31a_n^2a_{n+1}-30a_n^3=0
$$
を満たしている。
$a_{60}$としてあり得る値すべての総積を求めたい。
ただし答えは非常に大きいので、答えの正の約数の個数を1000で割ったあまりを答えよ。

解答形式

$0$以上$999$以下の整数を半角英数字で入力してください。

(11/7:一部問題文を修正)

katsuo_temple

公開日時: 2024年10月31日21:05 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$∠B=60°$を満たす鋭角三角形$ABC$について、その内接円が$AC,AB$にそれぞれ$D,E$で接している。$∠B$の二等分線と直線$DE$の交点を$F$とすると以下が成立した。
$$
AB=4 CF=3
$$
$F$を通り$AB$と平行な直線と$AC$の交点を$G$とするとき、$CG²$の値を求めてください。

解答形式

半角で解答してください。

ammonitenh3

公開日時: 2024年10月30日23:15 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

三角形ABCとその辺AB上にある点Dと辺CA上にある点Eが次の二つの条件を満たしている.(ただし、点D,Eは点Aとは一致しない)
 (Ⅰ)AB=13,BC=14,CA=15
 (Ⅱ)4点B,C,E,Dは共円
 このとき、「点Aを通りDEに垂直な直線」と、線分BCの交点をFとする.
 BFの長さを求めよ.

解答形式

例)この答えは、互いに素な自然数$a$,$b$を用いて$\frac{a}{b}$と書けるので、$a$+$b$の値を答えてください.