${}$ 西暦2023年問題第7弾、今年最後の西暦問題です。ラストを飾るのは循環小数です。循環小数というテーマ自体が奥深いわけですが、その一端を味わえるようにしました。どうぞ最後までお付き合いください。
${}$ いつもの図形問題ですが、明日1月8日(日)は出題をお休みして、翌週1月15日(日)から再開する予定です。お待たせしていますが、またどうぞよろしくお願いします。
${}$ 解答は、$N$の値をそのまま入力してください。「$N=$」の記載は不要です。
(例) $N=107$ → $\color{blue}{107}$
$n$ を自然数とする。置換 $\sigma\in \mathfrak{S}_n$ に対して,$\sigma$ の近道度 $m(\sigma)$ を次のように定義する。
例えば $\sigma=(1 4 2)(5 6 7)(3)\in \mathfrak{S}_7$ なら,$\sigma$ は長さ $3, 3, 1$ の巡回置換からなるから,$\sigma$ の近道度 $m(\sigma)$ は
$$
m(\sigma)=\frac{1}{3\cdot 3\cdot 1}=\frac{1}{9}
$$
である。自然数 $n$ に対して,${1,\cdots, n}$ の置換(これは $n!$ 通りある)の近道度の平均を
$$
f_n=\frac{1}{n!}\sum_{\sigma\in \mathfrak{S}_n} m(\sigma)
$$
とおく。
$$
f_1=1, \; f_2=\frac{\fbox{ア}}{\fbox{イ}}, \; f_4=\frac{\fbox{ウエオ}}{\fbox{カキク}}
$$
であり,
$$
\sum_{n=0}^{\infty} f_n=\fbox{X}
$$
である(級数が収束することは証明なしに認めてよい)。ただし $f_0=1$ と約束する。
※ $\mathfrak{S}_n$ は $n$ 次対称群を表す(19:03追記)。
$\fbox{ア}$ 〜 $\fbox{ク}$ には 0 - 9
の数字が当てはまります。$\fbox{ X }$にはある実数が当てはまります。空欄のある分数はすべて既約です。
9.9
と解答してください。数列$~\{a_n\},~\{b_n\}$を相異なる2つの実数$~\alpha,\beta~$を用いて以下のように定義する。
$$
a_n = \cfrac{1}{\displaystyle{\sum_{k=0}^n}\alpha^{n-k}\beta^{k}}~~~,~~~b_n = \sum_{m=0}^\infty\frac{1}{a_mn^{m+2}}
$$ただし、$\{b_n\}~$は$n\geq 2$で定義されるものとする。$\alpha,\beta~$が
$$
\begin{cases}
\alpha + \beta = 1\\
|\alpha||\beta| = 1
\end{cases}
$$を満たすとき、
$$
a_k = b_k
$$となる最小の自然数$~k~$は$~k=\fbox{ア}\fbox{イ}$であり、このとき$~b_k = \cfrac{\fbox{ウ}}{\fbox{エ}\fbox{オ}}$である。
ア〜オには0から9までの数字のいずれかが入る。
数字列「アイウエオ」をすべて半角で入力し解答せよ。
ただし、分数は既約分数の形にすること。
$I=\displaystyle \int_{0}^{\pi}\frac{x\sin x}{\sin^{2\cdot2}x -2\sin^2x+2} dx$を求めよ。
答えは、
$\displaystyle I=\frac{\pi}{a\sqrt{b}}(c\log(\sqrt{d}+e)+\pi)$の形になります。($a,b,c,d,e$は1桁の自然数)
「abcde」(5桁の自然数)を入力してください。なお、センター、共通テスト形式で数字を埋めてください。
三角形の3つの内角の大きさを$A,B,C$とします。このとき、次の式の最小値を求めてください。
$$
\frac{1-\cos A}{\cos B+\cos C}+\frac{1-\cos B}{\cos C+\cos A}+\frac{1-\cos C}{\cos A+\cos B}
$$
最小値は$\frac {[ア]}{[イ]}$となります。$[ア]+[イ]$を解答してください。
ただし、$[ア],[イ]$にはそれぞれ自然数が入り、その最大公約数は$1$とします。
【補助線主体の図形問題 #091】
図形の構造から面積比を求める問題を「面積関係」を称してしばしば出題してきました。今回はちょっと趣向を変えて、逆に面積比から辺比を求める問題です。式を立てるところまでは暗算で行けます。補助線と存分に戯れてください!
《参考》過去出題分から面積関係を問うている問題を一部抜粋
${}$ 他にもこのような問題にあたりたい場合には
https://pororocca.com/problem/?category=5&name=&dif_min=&dif_max=&tag=%E9%9D%A2%E7%A9%8D&sort_by=oldest
にアクセスすると一望できます。ただし、いわゆる普通の求積問題も交じっていることをご了解願います。
${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$ $10\sqrt{2}\cm$ → $\color{blue}{14.14}$ $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
入力を一意に定めるための処置です。
たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。
【補助線主体の図形問題 #112】
今週の図形問題です。今回は正方形をたっぷり用意してみました。うまいこと補助線を引いて、僕の意図を浮かび上がらせてみてください。
${
\def\cm{\thinspace \mathrm{cm}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$ $10\sqrt{2}\cm$ → $\color{blue}{14.14}$ $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
入力を一意に定めるための処置です。
たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。
しずかちゃんがシャワーを浴びようとしてお湯を出し始めた。はじめのお湯の温度は $35$℃で、お湯を出し始めてから $n$ 秒後のお湯の温度は $T_n$℃であるとする。
しずかちゃんは非常に温度に敏感で、シャワーの温度をちょうど $40$℃に設定しないと落ち着かない。そこで、しずかちゃんはお湯を出し始めてから $n=1,2,3...$ 秒後に、シャワーの温度がちょうど $a(40-T_n)$℃だけ上がるように温度調節レバーを操作する。ここで、$a$ は正の定数である。なお、$T_n>40$ のときは $a(T_n-40)$℃だけ温度が「下がる」ように操作するものとする。
$N$ を自然数の定数として、温度調節レバーの操作がお湯の温度に反映されるまでちょうど $N$ 秒かかる。すなわち、しずかちゃんがお湯を出し始めてから $n$ 秒後に温度調節レバーを操作したとき、 はじめから $n+N$ 秒後と $n+N+1$ 秒後の間にシャワーの温度が $a(40-T_n)$℃だけ上昇する。
さて、$\displaystyle \lim_{n \to \infty} T_n=40$ であれば、しずかちゃんは十分な時間が経つと快適にシャワーを浴びることができる。$a$ が十分小さければ、すなわち温度をできるだけ少しづつ上げていけば、直感的にはこのことは可能である。では、具体的には $a$ はどれほど小さい必要があるのだろうか。そこで、$\displaystyle \lim_{n \to \infty} T_n=40$ が成り立たないような $a$ の最小値を $a_c$ とおく。以下の空欄を埋めよ。
(1) $N=1$ のとき、$a_c=\fbox{ア}$ である。
(2) $N=2$ のとき、$\displaystyle a_c=\frac{\fbox{イウ}+\sqrt{\fbox{エ}}}{\fbox{オ}}$ である。
ア〜オには、0から9までの数字または「-」(マイナス)が入る。
(1)の答えとして「ア」にあてはまる数を半角で1行目に入力せよ。
(2)の答えとして、文字列「イウエオ」を半角で2行目に入力せよ。
$\displaystyle f(x)=\int_{0}^{1}\frac{(1+xt^2)-e^{xt^2}}{t\cdot e^{xt^2}}dt$とおく。
1 $\displaystyle \lim_{x \to 0}\frac{f(x)}{x^p}$が有限値となる$p$とその極限値$\alpha$を求めよ。
2 $\displaystyle \lim_{x \to \infty}\frac{f(x)}{(\log{x})^q}$が有限値となる$q$とその極限値$\beta$を求めよ。
$p=\fbox{ア}$
$\alpha=\displaystyle-\frac{\fbox{イ}}{\fbox{ウ}}$
$q=\fbox{エ}$
$\beta=\displaystyle-\frac{\fbox{オ}}{\fbox{カ}}$
である。$\fbox{ア}$から順に1行ごとに答えよ。