数学の問題一覧

カテゴリ
以上
以下

正方形の中の八角形の面積

Fuji495616 自動ジャッジ 難易度:
2月前

8

問題文

四角形ABCDは正方形で、点E,F,G,Hは辺の中点です。四角形ABCDの面積が54㎠のとき、青い部分の面積は何㎠ですか。

解答形式

半角数字で入力してください。
例)10

[D] Along the Edges

hinu 自動ジャッジ 難易度:
3年前

8

問題文

$$
\newcommand{\nc}{\newcommand}
\nc{\wake}[1]{\begin{cases} #1 \end{cases}}
\nc{\f}[2]{\dfrac{#1}{#2}}
\nc{\s}[1]{\{#1\}}
\nc{\pmat}[1]{\begin{pmatrix} #1 \end{pmatrix}}
\nc{\lr}[1]{\left( #1 \right)}
\nc{\com}[2]{{}_{#1}{\rm C}_{#2} \right)}
\nc{\bar}[1]{{\overline{#1}}}
\nc{\bb}[1]{{\mathbb {#1}}}
\nc{\rmn}[1]{{\rm #1}}
\nc{\q}{\quad}
\nc{\x}{\times}
\nc{\a}{\alpha}
\nc{\b}{\beta}
\nc{\th}{\theta}
\nc{\Q}[1]{\fbox{#1}}
$$

下のように $\rm AB=1\ ,\ BC=2$ の長方形 $\rm ABCD$ がある。点 $\rm P$ は $t=0$ で点 $\rm A$ におり、 $1$ 秒間に $1$ の速度で辺の上を進む。点 $\rm P$ が 点 $\rm A,B,C,D$ のいずれかにいるとき確率 $p$ で辺 $\rm AB$ に平行な向きに、 $1-p$ の確率で辺 $\rm AD$ に平行な向きに向きを変え、それ以外の場所で向きを変えることはないものとする。

$p=\dfrac56$ とするとき点 $\rm P$ が $2n$ 秒後 $(n=0,1,2,\cdots)$ に点 $\rm A$ にいる確率を求めたい。

点 $\rm P$ が $2n$ 秒後に点 $\rm A,D$ にある確率を $A_n,D_n$ とおく。このとき $X_n=A_n+D_n$ とおくと漸化式
$$
X_{n+1}=\f{\Q{ア}}{\Q{イ}}X_n +\f{\Q{ウ}}{\Q{エ}}
$$
が成り立つ。また $Y_n=A_n-D_n$ とおくと漸化式
$$
Y_{n+2}-\f{\Q{オ}}{\Q{カ}}Y_{n+1}+\f{\Q{キ}}{\Q{ク}}Y_n=0
$$
が成り立つ。これらを初期条件 $X_0=\Q ケ\ ,Y_0=\Q{コ}\ ,Y_1=\f{\Q{サ}}{\Q{シ}}$ のもとで解くことで
$$
A_n=\f{\Q ス}{\Q セ}+\f{\Q ソ}{\Q タ}\lr{\f{\Q チ}{\Q ツ}}^n-\lr{\f{\Q テ}{\Q ト}}^n+\f{\Q ナ}{\Q ニ}\lr{\f{\Q ヌ}{\Q ネ}}^n
$$
を得る。なお ${\f{\Q チ}{\Q ツ}}<{\f{\Q ヌ}{\Q ネ}}$ である。

解答形式

上の空欄を埋めよ。解答は半角数字・改行区切りで入力すること。ただし $\Q ア$ から $\Q ネ$ にはそれぞれ 1 から 999 までの整数が入り、分数は既約分数の形で表してある。

OMC没問2

natsuneko 自動ジャッジ 難易度:
5月前

8

問題文

正整数 $n$ に対して, $n^i \equiv 1 \ (\textrm{mod} \ 25 )$ を満たす最小の正整数 $i$ を $f(n)$ とします. (ただし, このような $i$ が存在しない場合は, $f(n) = 0$ とします.) このとき, $1 \leq n \leq 10000$ の範囲で $f(n)$ が最大値をとるような $n$ の総積を $1000$ で割った余りを解答して下さい.

解答形式

非負整数値を解答して下さい.

三角形と4つの正方形

tb_lb 自動ジャッジ 難易度:
2年前

8

【補助線主体の図形問題 #053】
 先週は予告もなく出題をお休みして失礼しました。
 今週の図形問題は大した計算量ではないのですが、簡単なメモが取れるとぐっと解きやすくなるかと思います。補助線が活躍するのはいつも通りです。どうぞ存分にお楽しみください。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

幾何問題24/1/8

miq 自動ジャッジ 難易度:
3月前

8

問題文

$AB=5,AC=9$ なる三角形 $ABC$ があり,その外接円を $\Gamma$ とします.辺 $BC$ の中点を $D$ とすると,$B$ における $\Gamma$ の接線と半直線 $DA$ が点 $E$ で交わりました.また,辺 $AC$ 上の点 $F$ が $\angle CDF=\angle BEA$ をみたしています.$DF=\dfrac{10}{3}$ のとき,線分 $AE$ の長さは互いに素な正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ の値を求めてください.

解答形式

半角数字で解答してください。

座王001(ボツ問題)

shoko_math 自動ジャッジ 難易度:
40日前

8

問題文

$\dfrac{1}{2},\dfrac{2}{3},\dfrac{3}{5},\dfrac{5}{8},\dfrac{8}{13},\dfrac{13}{21},\dfrac{21}{34},\dfrac{34}{55},\dfrac{55}{89}$ の中から( $2$ 個以上の)偶数個の異なる分数を選ぶ方法 $2^{8}-1$ 通りに対し,選んだ数の積を考えるとき,それらの総和は互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ の値を解答してください.

解答形式

半角数字で解答してください.

2年前

8

問題文

正方形2つを図のように配置しました。青で示した角の大きさを求めてください。

解答形式

$x=a$ 度です。$0\leq a\lt 180$ を満たす整数 $a$ を半角数字で解答してください。


【補助線主体の図形問題 #081】
 今週の図形問題は求角問題にしてみました。おそらく僕も想定していなかった解法がいろいろあることでしょう。想定解は補助線がビシッと活躍します。どうぞ思い思いの解法をお楽しみください。

※2022年12月6日22時17分追記
問題文に誤りがあり、修正したものに差し替えました。ここにお詫びして訂正いたします。申し訳ございませんでした。
(誤)接線AB、AC → (正)接線PB、PC

解答形式

${\renewcommand\deg{{}^{\circ}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。角度は弧度法ではなく度数法で表すものとします。
(例) $12\deg$ → $\color{blue}{12.00}$  $\frac{360}{7}^{\circ}$ → $\color{blue}{51.43}$
 入力を一意に定めるための処置です。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

2年前

8

問題文

図の条件の下で、ピンクで示した線分の長さ $x$ を求めてください。
なお、外側の四角形は正方形です。

解答形式

半角数字で解答してください。

9月前

8

【補助線主体の図形問題 #107】
 今週の図形問題です。3連休の中日、ちょっと重めの問題を用意しました。そのかわり(想定解では)計算はわずか、暗算で処理できる分量です。どうかお好きな解法でお楽しみください。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。


【補助線主体の図形問題 #042】
 西暦問題をお送りしてきた新年の特別出題も終わり、通常出題である補助線主体の図形問題に戻ります。
 今回の問題、図から何かを読み取りたくなりますが、その直感の根拠までぜひ考えてみてください。暗算解法もいつも通り仕込んでありますよ!

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm^2$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm^2$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm^2$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

求長問題3

Kinmokusei 自動ジャッジ 難易度:
3年前

8

問題文

2つの正六角形が図のように配置されています。
赤い線分の長さが10のとき、青い線分の長さを求めてください。
ただし、図中"center"で示した点は各正六角形の外心です。

解答形式

半角数字で解答してください。