数学の問題一覧

カテゴリ
以上
以下

tb_lb

公開日時: 2023年5月14日22:07 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ

初等幾何 長さ

【補助線主体の図形問題 #097】
 今週の図形問題です。今週は小ネタを詰めたような問題となりました。補助線で見破ってみてください。とはいえ、解法は自由です。お好きな解法でぜひ解いてやってください。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

o_syusi

公開日時: 2023年1月21日0:32 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ

因数分解 解けると気持ちいい

次の式を因数分解しなさい

$2(x-y)^2-xy(x^2+2xy+y^2-3)+(2x+2y)^2-(x+y)^2+xy[(x+y)(x-y)+2y(x+y)+5]$

解答形式

半角で解答のみを記入すること

降べきの順で記入すこと

同じ項の中にx,yが同時にある場合、xを先に記入すること

指数の表記は ^n の形で解答すること

括弧の外にある係数は左側に記入すること

括弧内の項は、文字 数 の順に記入すること

Kinmokusei

公開日時: 2021年1月30日22:01 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

長方形・正方形・円が図のように配置されています。赤で示した線分の長さが7、長方形の面積が12のとき、青い線分の長さとしてあり得るものを全て求めてください。

解答形式

解答は$\sqrt{\fbox {アイ}},\frac{\sqrt{\fbox{ウエオ}}}{\fbox カ}$となります。文字列「アイウエオカ」を解答してください。ただし、根号の中身が平方数の倍数とならないように解答してください。

tb_lb

公開日時: 2021年4月25日23:01 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ

初等幾何 長さ

【補助線主体の図形問題 #012】
 日本各地に緊急事態宣言やら蔓延防止等重点措置やら発出されてピリピリしている昨今ではありますが、ここはひとつ心穏やかに図形問題と向き合うのはいかがでしょうか。今回も補助線次第で暗算処理可能なように調整してあります。ひらめきの快感をぜひ味わってください。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

Kinmokusei

公開日時: 2020年12月12日19:51 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

次の文章の空欄を埋めてください。

$n$個の実数$x_1,x_2,\cdots,x_n$が、$x_1+2x_2+3x_3+\cdots+nx_n=n$を満たすとき、$x_1^2+x_2^2+\cdots+x_n^2$の最小値を$m_n$とすると、
$$
m_n=\frac{\fbox アn}{(n+\fbox イ)(\fbox ウn+1)}
$$
であり、
$$
\lim_{n\rightarrow\infty}\left(m_1+\frac{m_2}{2}+\cdots+\frac{m_n}{n}\right)=\fbox{エオ}\left(-\frac{1}{\fbox カ}+\ln{\fbox キ}\right)
$$
である。

解答形式

$\fbox ア~\fbox キ$には$1$以上$9$以下の整数が入ります。文字列アイウエオカキを半角数字で解答してください。
例: $\fbox ア=1,\fbox イ=2,\fbox ウ=3,\fbox {エオ}=45,\fbox カ=6,\fbox キ=7$ $\rightarrow$ $1234567$ と解答

fusshi

公開日時: 2020年9月12日18:00 / ジャンル: 数学 / カテゴリ: 大学数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

行列$A$を次で定義する。
$$
A=
\begin{pmatrix}
6& -3 & -7 & 0 & 0 & 0\\
-1 & 2 & 1 & 0 & 0 & 0\\
5& -3 & -6 & 0 & 0 & 0\\
0& 0 & 0 & 1 & 2 & 1\\
0& 0 & 0 & -1 & 4 & 1\\
0& 0 & 0 & 2 & -4 & 0\\
\end{pmatrix}
$$
このとき次の実線形空間の次元を求めよ。
$$
V=\{X\in M_{6}(\mathbb{R})\mid AX=XA\}
$$
ただし、$M_{6}(\mathbb{R})$とは6行6列の実正方行列全体の集合である。

解答形式

半角数字で答えよ。

zyogamaya

公開日時: 2021年9月16日18:39 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$a_1=1,na_{n+1}-2(n+2)a_n=(n+1)(n(n+2)+2^{n+1})$を満たす数列${a_n}$の一般項を求めよ。

解答形式

一般項は一桁の自然数$a,b,c,d$を用いて、$a_n=(an^2+n-b)c^{n-1}-n(n+d)$と表されるので、$abcd$を解答してください。


$(a,b,c,d)=(1,2,3,4)$→$1234$を入力

zyogamaya

公開日時: 2020年10月9日10:34 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

関数$f(x)=(xe^{x-1}+x^2+2x+2)e^{-x}$の極大値を求めよ。

解答形式

半角数字またはTeXで入力してください。分数の場合は「a/b」などと入力可能です。
例:
答えが$\displaystyle\frac{e^2}{7}$の場合、「e^2/7」と入力する。

答えが$\displaystyle\frac{4e^3+26}{e^4}$の場合、「(4e^3+26)/e^4」と入力する。

Kinmokusei

公開日時: 2022年1月9日1:03 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

図の条件の下で、青で示した角の大きさを求めてください。

解答形式

$x=a$ 度 です。$a$ に当てはまる、0以上180未満の値を半角数字で解答してください。

rakuraku1216

公開日時: 2023年3月26日19:00 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ


ある座標平面がある。
(6、2)(6、0)(8、0)(8、18)(0、18)(0、2)(0、0)をそれぞれ
点A B C D E F G とする。この時、四角形ABGFと六角形DCBAFEの面積をそれぞれ2等分する直線Lを引くことを考える。
直線Lのy切片の絶対値を求めよ。

rakuraku1216

公開日時: 2023年3月26日19:00 / ジャンル: 数学 / カテゴリ: / 難易度: / ジャッジ形式: 自動ジャッジ


高さが100cmで底面積が600cm²の直方体の形をした水槽がある。この水槽は通常の水槽とは異なり、水槽の底面を上下移動させることができる。(底面が移動するとそれに伴って水も移動するため、水面も移動する。)
まず、底面を1番下にした状態で毎分500cm³で40分間、水を入れた。
次に底面を上にXcm移動させた。
そして底面が上に移動した状態で毎分600cm³で60分間、水を入れた。
そして底面を上にXcm移動させると、4000 cm³ だけ水が溢れ出た。

この時、Xの値を求めなさい。ただし分数になる場合は以下のように答えなさい。

(例 1/2の場合は12 54/73の場合は5473 22/23の場合は2223 と答える )

tb_lb

公開日時: 2022年2月6日22:43 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ

初等幾何 面積

【補助線主体の図形問題 #045】
 今週は正多角形がらみの求積問題を用意しました。扱いやすい図形なので解法も多くありそうです。いつも通り暗算解法も仕込んであります。お好きな解法でお楽しみください!

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm^2$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm^2$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm^2$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。