tb_lb

tb_lb

Twitter ID: @tb_lb
補助線主体の初等幾何の問題を投稿しています。出題方針や難易度評価については https://bit.ly/3wS99iY にまとめました。
補助線主体の初等幾何の問題を投稿しています。出題方針や難易度評価については https://bit.ly/3wS99iY にまとめました。
9月前

8

【補助線主体の図形問題 #126】
 今週の図形問題です。隙あらば暗算で処理できる程度の問題を好んで出題しているのですが、今回は暗算処理は厳しいかもしれません。紙&ペンをご用意の上、挑戦していただければと思います。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

五角形の求長

tb_lb 自動ジャッジ 難易度:
9月前

15

${}$ ご無沙汰しています。久しぶりの出題となりました。今回は補助線力が試せる1題となっています。補助線と共に試行錯誤をお楽しみください。腕に覚えのある方は暗算で処理し切るのも面白いですよ!

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

長方形とその外の点

tb_lb 自動ジャッジ 難易度:
10月前

17

【補助線主体の図形問題 #124】
 年始は西暦を織り込んだ数学・パズルの問題をお送りしてきましたが、また日曜夜通例の「補助線主体の図形問題」に戻ります。変わらぬご愛顧ををどうかよろしくお願いします。
 今回は、補助線を使えば計算量減を図れ、補助線を使わないと面倒な計算を強いられるという問題を用意しました。補助線解法を期待しているのですが、力技で解くのもアリです。お好きなようにお楽しみください。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。


${}$ 西暦2024年問題第7弾、最終回です。第5弾に引き続き8の倍数に注目したやや風変わりな場合の数の問題を用意しました。場合分け地獄に陥らないように、うまいこと処理してください。

解答形式

${}$ 解答は指定の場合の数を単位なしでそのまま入力してください。
(例)107通り → $\color{blue}{107}$


${}$ 西暦2024年問題第6弾です。いよいよ整数問題のお出ましとなりました。ある程度は手を動かす必要がありますが、あることに気づけば調べる候補をぐっと減らすことができます。約数の個数を求めるのが面倒な方はWolfram|Alpha https://www.wolframalpha.com なども併用して構いません。

解答形式

${}$ 解答は求める$n$の最小値をそのまま入力してください。
(例)$n=2106$ → $\color{blue}{2106}$


${}$ 西暦2024年問題第5弾です。今回は8の倍数に注目した場合の数の問題を用意しました。数え漏らしに気をつけてサクッと解いてやってください。

解答形式

${}$ 解答は指定の場合の数を単位なしでそのまま入力してください。
(例)105通り → $\color{blue}{105}$

10月前

9

${}$ 西暦2024年問題第4弾です。今回は連分数を素材にしてみました。一風変わった解き心地の問題をお楽しみください。

解答形式

${}$ 解答は有理数$a$と$b$の値を2行に分けて入力してください。値が整数のときにはそのまま整数表現で、非整数のときには既約分数○/△の形で入力することにします。「$a=$」「《1行目》」などの入力は必要ありません。
(例)$a=2024$、$b=\dfrac{1}{4}$ → 《1行目》$\color{blue}{2024}$、《2行目》$\color{blue}{1/4}$

10月前

21

${}$ 西暦2024年問題第3弾です。今回は中学入試風の規則性の問題となりました。軽く解いてやってください。

解答形式

${}$ 解答は黒石の個数を単位なしでそのまま入力してください。
(例)103個 → $\color{blue}{103}$


${}$ 西暦2024年問題第2弾です。第1弾に引き続き虫食算で、今回は割り算にしてみました。数学的手法(約数や倍数、偶奇性や剰余、不等式による絞り込み、などなど)を適宜用いることで面倒な場合分けや仮置きを軽減できるよう仕込んでいるのは変わりません。パズル的に解くのもよし、数学的にゴリゴリ解くのもよし、どうぞお好きなようにお楽しみください!

解答形式

${}$ 解答は2行目を「被除数÷除数」の形で入力してください。
(例) $2024 \div 102 = 19$ 余り $86$ → $\color{blue}{2024 \text{÷} 102}$
 入力を一意に定めるための処置です。数字は半角で、「÷」の演算記号はTeX記法(\div)でも、絵文字や環境依存文字でもなく、全角記号の「÷」でお願いします。空白(スペース)も入れる必要はありません。


${}$ 2024年、あけましておめでとうございます。本年もよろしくお願いいたします。
 さて、新年数日は図形問題をお休みして、西暦である2024を織り込んだ数学やパズルの問題をお送りします。
 初日・2日目は虫食算です。虫食算というと確定マスから埋めていき、時には場合分けや仮置きを利用するのが定番の手法ですが、僕が作る虫食算は数学的手法(約数や倍数、偶奇性や剰余、不等式による絞り込み、などなど)を適宜用いることで面倒な場合分けや仮置きを軽減できるようにしています。とはいえ、解き方は自由です。お好きなようにパズルなひと時をお楽しみください。

解答形式

${}$ 解答は上2行を「被乗数×乗数」の形で入力してください。
(例) $2024 \times 101 = 204424$ → $\color{blue}{2024 \text{×} 101}$
 入力を一意に定めるための処置です。数字は半角で、「×」の演算記号はTeX記法(\times)でも、絵文字や環境依存文字でもなく、全角記号の「×」でお願いします。空白(スペース)も入れる必要はありません。


【補助線主体の図形問題 #123】
 ご無沙汰ぶりの&2023年最後の図形問題です。今年も僕の出題を解いていただきありがとうございました。来年も引き続きよろしくお願いします。よいお年を!

解答形式

${
\renewcommand\deg{{}^{\circ}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。角度は弧度法ではなく度数法で表すものとします。
(例) $12\deg$ → $\color{blue}{12.00}$  $\frac{360}{7}^{\circ}$ → $\color{blue}{51.43}$
 入力を一意に定めるための処置です。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

告知

${}$ 2024年も年始1月1日~7日に西暦を織り込んだ数学・パズルの問題をお送りする予定です。今回も虫食算からお目見えしようと思っています。どうぞよろしくお願いします!

3つの正八角形

tb_lb 自動ジャッジ 難易度:
12月前

13

【補助線主体の図形問題 #122】
 今週の図形問題です。今回は面積関係を問う問題です。想定解の計算量は大したことないのですが、いくぶん面倒かもしれません。じわじわと確定する面積を探しつつお楽しみください。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm^2$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm^2$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm^2$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

円と菱形

tb_lb 自動ジャッジ 難易度:
12月前

11

【補助線主体の図形問題 #121】
 今週の図形問題です。補助線が活躍するのはいつも通りで、さらに、手慣れた方なら暗算で解けてしまうかもしれません。ぜひ幅広く挑戦してもらえたら、と思います。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

13月前

4

【補助線主体の図形問題 #120】
 今週の図形問題です。普段は補助線次第で暗算で処理できる問題を隙あらば入れているのですが、今回は計算量が多めです。補助線と工夫を武器に計算量を減らす道を探ってみてください。計算力に自信のある方は、どうぞその計算力でなぎ倒してもいいですよ!

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。


【補助線主体の図形問題 #119】
 今週の図形問題です。今回も補助線が活躍するのはいつも通りで、補助線次第で手慣れた方なら暗算で済んでしまいそうな計算量となっています。……なんて書いていますが、解き方は自由! ぜひお好きな解法でお楽しみください!!

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

角の比が1:2:3の三角形

tb_lb 自動ジャッジ 難易度:
13月前

7

【補助線主体の図形問題 #118】
 今週の図形問題です。僕の問題にしては珍しく角の比が表に出た問題となりました。補助線の威力をぜひ感じ取ってください。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

13月前

17

【補助線主体の図形問題 #117】
 今週の図形問題です。少しずつ発見を積み重ねていく、やや重めの問題となっています。どうぞじっくりと取り組んでやってください。

お詫びと訂正

${}$ 投稿時点から翌日10月2日(月)午前1時過ぎまで、$\mathrm{AB} > \mathrm{AC}$となるべきところが$\mathrm{AB} > \mathrm{BC}$となっていました。お詫びして訂正いたします。現在は修正済みの画像となっています。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm^2$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm^2$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm^2$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

14月前

5

【補助線主体の図形問題 #116】
 今週の図形問題です。今回は求角問題を用意しました。一瞬ギョッとするかもしれませんが、おなじみの形が埋め込まれています。腕に覚えのある方は暗算でどうぞ!

解答形式

${
\renewcommand\deg{{}^{\circ}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。角度は弧度法ではなく度数法で表すものとします。
(例) $12\deg$ → $\color{blue}{12.00}$  $\frac{360}{7}^{\circ}$ → $\color{blue}{51.43}$
 入力を一意に定めるための処置です。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。