二等辺三角形の外心と内心がつくる角

tb_lb 自動ジャッジ 難易度: 数学 > 中学数学
2022年2月27日23:04 正解数: 13 / 解答数: 39 (正答率: 33.3%) ギブアップ不可
初等幾何 角度

全 39 件

回答日時 問題 解答者 結果
2024年10月27日23:47 二等辺三角形の外心と内心がつくる角 Mr.MAT
正解
2024年10月27日23:40 二等辺三角形の外心と内心がつくる角 ゲスト
正解
2024年10月23日5:41 二等辺三角形の外心と内心がつくる角 Mr.MAT
不正解
2024年10月23日5:39 二等辺三角形の外心と内心がつくる角 Mr.MAT
不正解
2024年10月22日20:59 二等辺三角形の外心と内心がつくる角 ゲスト
不正解
2024年10月13日21:43 二等辺三角形の外心と内心がつくる角 ゲスト
不正解
2024年10月13日21:37 二等辺三角形の外心と内心がつくる角 ゲスト
不正解
2024年10月13日21:36 二等辺三角形の外心と内心がつくる角 ゲスト
不正解
2024年5月23日22:36 二等辺三角形の外心と内心がつくる角 miq_39
正解
2024年5月21日3:05 二等辺三角形の外心と内心がつくる角 SSH
正解
2024年5月21日2:58 二等辺三角形の外心と内心がつくる角 SSH
不正解
2024年5月21日2:22 二等辺三角形の外心と内心がつくる角 ゲスト
不正解
2024年5月21日2:21 二等辺三角形の外心と内心がつくる角 ゲスト
不正解
2024年5月21日1:48 二等辺三角形の外心と内心がつくる角 ゲスト
不正解
2024年5月21日1:46 二等辺三角形の外心と内心がつくる角 ゲスト
不正解
2024年5月21日1:46 二等辺三角形の外心と内心がつくる角 ゲスト
不正解
2024年5月20日17:45 二等辺三角形の外心と内心がつくる角 SSH
不正解
2024年5月20日17:44 二等辺三角形の外心と内心がつくる角 ゲスト
不正解
2023年12月10日12:20 二等辺三角形の外心と内心がつくる角 nmoon
正解
2023年12月1日22:43 二等辺三角形の外心と内心がつくる角 natsuneko
正解
2023年12月1日2:25 二等辺三角形の外心と内心がつくる角 ゲスト
不正解
2023年12月1日2:24 二等辺三角形の外心と内心がつくる角 ゲスト
不正解
2023年11月30日22:03 二等辺三角形の外心と内心がつくる角 mochimochi
正解
2023年11月30日21:57 二等辺三角形の外心と内心がつくる角 mochimochi
不正解
2023年11月28日19:06 二等辺三角形の外心と内心がつくる角 ゲスト
不正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

直角三角形と内心

tb_lb 自動ジャッジ 難易度:
2年前

13

【補助線主体の図形問題 #044】
 今週の図形問題は内心を素材にしてみました。うまい補助線が引けると暗算で処理できるのはいつも通りですが、内心の懐の広さ(?)ゆえに解法の選択肢も広いです。暗算とか気にせずお好きなように解いてもらえたら本望です。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。


【補助線主体の図形問題 #023】
 今回は久しぶりに求角問題を用意しました。うまい補助線が引けるとスパッと解けるようになっています。補助線と共に楽しいひと時をお過ごしください。

解答形式

${\renewcommand\deg{{}^{\circ}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。角度は弧度法ではなく度数法で表すものとします。
(例) $12\deg$ → $\color{blue}{12.00}$  $\frac{360}{7}^{\circ}$ → $\color{blue}{51.43}$
 入力を一意に定めるための処置です。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

ヒント内容の予告

  1. 全体の方針をぼんやりと
  2. ヒント1を具体的に
  3. ヒント2の続き
3年前

10

【補助線主体の図形問題 #039】
 今日は12月12日ということでそこかしこに12が現れる問題を用意してみました。補助線が活躍するのはいつも通りですし、暗算処理が可能な解法も仕込んであります。
 年末に向かう忙しい時期かもしれませんが、ひと時の図形タイムをお過ごしください!

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm^2$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm^2$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm^2$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

23月前

19

【補助線主体の図形問題 #087】
 今週の図形問題は面積関係をテーマにしてみました。中点だらけということもあり、複雑な計算は不要です。自信のある方はぜひ暗算で処理してみてください。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm^2$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm^2$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm^2$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

弧上の点と垂直

tb_lb 自動ジャッジ 難易度:
24月前

15

【補助線主体の図形問題 #086】
 今週の図形問題です。今回は円弧と垂線を組み合わせてみました。円弧と垂線が組み合わさったときに生じる性質をお楽しみください。補助線が活躍するのはいつも通りですよ!

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。


【補助線主体の図形問題 #017】
 今回は方針により計算量が変化する問題を用意しました。とはいえ暗算で解くには幾分厳しいです。簡単な計算用紙&筆記具をお手元にご用意の上で挑戦してみてください。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
\def\mytri#1{\triangle \mathrm{#1}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

ヒント内容の予告

  1. 全体方針をぼんやりと
  2. ヒント1の続き
  3. ヒント2の続き
  4. ヒント3の続き

【補助線主体の図形問題 #055】
 直角三角形を舞台に、垂線&角の2等分線&平行線と直線図形の定番役者がそろいました。代数的にガリガリやりたくなりますが、いつも通り暗算解法も仕込んであります。選択肢の多さが生み出す発見をお楽しみください。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。


【補助線主体の図形問題 #052】
 今週の図形問題もシンプルにしてみました。シンプルなだけに補助線の威力が存分に味わえるかと思います。頭の中で完全に処理し切れる解法を想定していますが、これだけ単純な構図だと解法も多様でしょう。自由な手法でお楽しみいただければ本望です。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。


【補助線主体の図形問題 #028】
 今回は素朴な面積関係の問題を用意しました。素朴なだけに多様な手法が通用します。力技解法もあれば、補助線による暗算解法も仕込んであります。思い思いの手法で挑戦してみてください!

※2021年9月11日より難易度評価を見直して、総じて★+1しました。この問題の現難易度評価★2.5は、旧評価の★1.5にあたります。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm^2$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm^2$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm^2$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

3年前

16

【補助線主体の図形問題 #009】
 今日の問題はとびっきりシンプルにしてみました。補助線でガリガリ計算することもできますが、ある発想があれば暗算一発で解くことも可能です。いろいろな可能性を探ってみてください。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm^2$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm^2$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm^2$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

ヒント内容の予告

  1. 全体の方針をぼんやりと
  2. この問題におけるキーワードをぼんやりと
  3. ヒント2の内容を具体的に
  4. 補助線と全体の方針をやや具体的に

【補助線主体の図形問題 #025】
 このところ円がらみの出題が続いていたので、今回は直線図形だけで固めてみました。暗算でさくっと解いてしまってください!

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
\def\mytri#1{\triangle \mathrm{#1}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm^2$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm^2$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm^2$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

ヒント内容の予告

  1. 注目点をぼんやりと
  2. ヒント1の続き
  3. ヒント2の続き

円周上の5点

tb_lb 自動ジャッジ 難易度:
3年前

10

【補助線主体の図形問題 #027】
 今週もいつも通り補助線の威力が楽しめる図形問題を用意しました。暗算処理が十分可能なように調整してあります。とはいえ、言うまでもなく解法は自由です。お好きな解法でお好きなようにお楽しみください。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。