2023-N=√(73x)とする。 Nが整数のとき、Nの絶対値が最小となるようなxを求めよ。ただし、xは自然数とする。
そのまんま半角でどうぞ(`∇´)
2023-N=√73x 変形すると N=2023-√73x 「Nの絶対値が最小」は、 「2023と√73xの差が最小」と言いかえられる。
Nが整数なら√73xも整数 つまりx=73k² 即ち N=2023-73kということである。
2023÷73=27余り52
Twitterでログイン Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
図の条件の下で,線分 $AB$ の長さを求めてください. ※orthocenter:垂心,circumcenter:外心
$AB^2$ の値は互いに素な正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ の値を解答してください.
【補助線主体の図形問題 #061】 今週の図形問題はぐっと取り組みやすい問題を用意しました。補助線を引くとどこかで見た構図が現れるはずです。今まで横眼で眺めていただけの人もぜひ挑戦してみてください!
${}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。 (例) $12\ \mathrm{cm}$ → $\color{blue}{12.00}$ $10\sqrt{2}\ \mathrm{cm}$ → $\color{blue}{14.14}$ 入力を一意に定めるための処置です。$\pi=3.14$とは限りませんのでご注意ください。関数電卓やグーグルの電卓機能、Wolfram|Alphaなどのご利用をお勧めします。
【補助線主体の図形問題 #079】 先週今週と2週続けて内心と傍心をテーマにした問題をお送りしています。補助線次第では暗算可能です。挑戦をお待ちしております!
図の条件の下で,半円の直径 $x$ を求めてください.
$x^2$ の値を半角数字で解答してください.
2160nがある階乗と等しくなるような自然数nのうち、2番目に小さいもの、3番目に小さいものをそれぞれ求めよ。
例えば、5,10のように、半角数字,半角数字と、左から2番目に小さいもの、3番目に小さいものと並べて記入してください。
【補助線主体の図形問題 #007】 今回は図形問題の王道から円がらみの求角問題を用意しました。手慣れている方なら脳内で処理できるくらいの計算量です。どうぞ円と角度の世界を堪能してください。
${}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。角度は弧度法ではなく度数法で表すものとします。 (例) $12^{\circ}$ → $\color{blue}{12.00}$ $\frac{360}{7}^{\circ}$ → $\color{blue}{51.43}$ 入力を一意に定めるための処置です。関数電卓やグーグルの電卓機能、Wolfram|Alphaなどのご利用をお勧めします。
図の条件の下で、$AB^2+BC^2+CD^2+DA^2$ の値を求めてください。
半角数字で解答してください。
【補助線主体の図形問題 #078】 今週来週と2週続けて内心と傍心をテーマにした問題をお送りします。補助線が活躍するのはいつも通りです。若干計算量が多いので、紙とペンを用意した方が安心できるかもしれません。暗算で解いてやるという初等幾何猛者の方はどうぞ暗算で解いてやってください!
図の条件の下で、青で示した三角形の面積を求めてください。
解答は互いに素な正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので、$a+b$ の値を半角数字で解答してください。
$$\quad$$鋭角三角形の三辺の長さが $22_{(N)},$ $124_{(N)},$ $130_{(N)}$ である。 自然数 $N$ の満たす条件を求めよ。 $$\quad$$
半角で入力してください。 $N$ の値が一意に定まる場合は、その値を入力してください。 $N$ の値に範囲がある場合は、最小値~最大値という形式で入力してください。ただし、最大値が存在しない場合は、最小値~という形式で入力し、複数の区間が存在する場合は最小値が小さいものから改行区切りで入力してください。 例) 解答が $N=17, 22≦N≦30, 330≦N$ の場合 17 22~30 330~
【補助線主体の図形問題 #065】 今週の図形問題は二等辺三角形、外心に垂線、平行線と要素てんこ盛りです。要素が多いがゆえに思いつく方針も多いかもしれませんが、今回も暗算解法を仕込んであります。暗算からあまりに遠い方針に陥りそうなら、一旦間を置いてから解き直すのもいいかもしれません。存分に補助線解法をお楽しみください。
図の条件の下で、緑の線分の長さ $x$ を求めてください。
$x^2$ の値を半角数字で解答してください。